黑龍江省哈爾濱2014年高考研討會數(shù)學(xué)資料:談2014年高三數(shù)學(xué)復(fù)習(xí)課件(60張)_第1頁
黑龍江省哈爾濱2014年高考研討會數(shù)學(xué)資料:談2014年高三數(shù)學(xué)復(fù)習(xí)課件(60張)_第2頁
黑龍江省哈爾濱2014年高考研討會數(shù)學(xué)資料:談2014年高三數(shù)學(xué)復(fù)習(xí)課件(60張)_第3頁
黑龍江省哈爾濱2014年高考研討會數(shù)學(xué)資料:談2014年高三數(shù)學(xué)復(fù)習(xí)課件(60張)_第4頁
黑龍江省哈爾濱2014年高考研討會數(shù)學(xué)資料:談2014年高三數(shù)學(xué)復(fù)習(xí)課件(60張)_第5頁
已閱讀5頁,還剩89頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、談高三數(shù)學(xué)復(fù)習(xí)提 綱一、如何看待高三數(shù)學(xué)復(fù)習(xí)二、目前高三數(shù)學(xué)復(fù)習(xí)中的問題與困惑三、高三數(shù)學(xué)復(fù)習(xí),教師必做之功課如何看待高三數(shù)學(xué)復(fù)習(xí)1.高考不應(yīng)是高三數(shù)學(xué)復(fù)習(xí)的唯一目標(biāo)2.數(shù)學(xué)學(xué)習(xí)、理解需要復(fù)習(xí)環(huán)節(jié)如何認(rèn)識復(fù)習(xí)課含義數(shù)學(xué)復(fù)習(xí)課是針對一個階段所學(xué)數(shù)學(xué)知識進(jìn)行有計(jì)劃的再回顧和再認(rèn)識,即通過對所學(xué)數(shù)學(xué)知識的歸納、梳理、發(fā)現(xiàn)規(guī)律、拓展運(yùn)用的過程,促進(jìn)學(xué)生實(shí)現(xiàn)鞏固雙基,加深理解,強(qiáng)化聯(lián)系,提高運(yùn)用能力、建立良好的數(shù)學(xué)認(rèn)知結(jié)構(gòu)。如何認(rèn)識復(fù)習(xí)課任務(wù)建立良好的數(shù)學(xué)認(rèn)知結(jié)構(gòu)強(qiáng)化聯(lián)系加強(qiáng)綜合運(yùn)用知識的能力加深理解鞏固雙基融會貫通再現(xiàn)梳理,再認(rèn)識,再理解在頭腦中構(gòu)建結(jié)構(gòu)良好的知識體系全面準(zhǔn)確聯(lián)系成網(wǎng)知識與其應(yīng)用背景條

2、件一體化知識應(yīng)用的易錯易混處明晰化融會貫通數(shù)學(xué)思想方法理解的深刻化解題思維策略運(yùn)用的靈活化技能掌握的精準(zhǔn)化、熟練化理論內(nèi)化技能訓(xùn)練數(shù)學(xué)活動經(jīng)驗(yàn)積累反思內(nèi)省概括如何認(rèn)識復(fù)習(xí)課特征顯著特征(五性)重復(fù)性概括性系統(tǒng)性反思性綜合性學(xué)生和教師各負(fù)其責(zé)如何認(rèn)識復(fù)習(xí)課指向教學(xué)信念核心知識、核心技能、基本思想方法學(xué)生數(shù)學(xué)素養(yǎng)教師教學(xué)活動學(xué)生困惑學(xué)生弱點(diǎn)數(shù)學(xué)觀念把握指向聚焦復(fù)習(xí)內(nèi)容來自首師附的調(diào)研:學(xué)生對復(fù)習(xí)的困惑第一組:懷疑復(fù)習(xí)的價值(3人次)第二組:如何復(fù)習(xí)? (6人次)第三組:如何形成知識體系?(5人次)第四組:如何處理錯題? 質(zhì)疑錯題整理的效果(4人次)第五組:如何避免錯誤? (10人次)第六組:如何進(jìn)

3、行數(shù)學(xué)學(xué)習(xí)?不懂?dāng)?shù)學(xué)的學(xué)習(xí)規(guī)律(2人次)第七組:如何解題?缺少解題思路(5人次)第八組:應(yīng)試技巧(2人次)第九組:情緒與狀態(tài)的自我調(diào)整(3人次)二復(fù)習(xí)教學(xué)中的問題與困惑1.學(xué)生學(xué)習(xí)的遺忘率高,怎么辦?2.教學(xué)總是走一步停一步,邁不開前進(jìn)的步伐,怎么辦?3.我們講得頭頭是道,學(xué)生沒有興趣,怎么辦?4.學(xué)生會而做不對,教師該怎樣幫助學(xué)生?。您的問題與困惑是。?三、高三復(fù)習(xí),教師必做之功課1、教師需要能夠從整體上理解和把握高中數(shù)學(xué)內(nèi)容;從整體上理解數(shù)學(xué)活動的本質(zhì);從整體上理解復(fù)習(xí)活動之內(nèi)涵,抓住數(shù)學(xué)復(fù)習(xí)教學(xué)的根本與核心。數(shù)學(xué)活動的本質(zhì)華東師大徐斌艷教授給出的“數(shù)學(xué)活動與數(shù)學(xué)核心能力”聯(lián)系圖基本技能需

4、要一以貫之?dāng)?shù)學(xué)作圖技能數(shù)學(xué)閱讀技能數(shù)學(xué)運(yùn)算技能落實(shí)數(shù)學(xué)表達(dá)技能數(shù)學(xué)推理技能基于概念、符號的內(nèi)涵解讀基于任務(wù)把握精度依算律盯目標(biāo)步步有據(jù)規(guī)范清晰簡明以函數(shù)為例函數(shù)性質(zhì)單調(diào)性奇偶性內(nèi)涵表示經(jīng)驗(yàn)材料周期性漸近線符號記法表示方法解析法列表法圖象法一次函數(shù)二次函數(shù)冪函數(shù)指數(shù)函數(shù)對數(shù)函數(shù)三角函數(shù)兩個變量相互制約,共處于同一個問題兩個變量各自變化的范圍?兩個變量誰是誰的函數(shù)?在具體問題中如何表達(dá)?多種表征的聯(lián)系與轉(zhuǎn)化,具有統(tǒng)一不可分割性各有所長,解析法對應(yīng)關(guān)系的算法化;圖表法對應(yīng)關(guān)系的直觀化它們體現(xiàn)出數(shù)形結(jié)合思想的要素圖象法是函數(shù)性質(zhì)最直接的表現(xiàn)兩個變量的變化過程“自變量的變化過程的特征”與“因變量變化過程

5、的特征”的聯(lián)系兩個變化過程的特征的對應(yīng)規(guī)律是函數(shù)性質(zhì)的本質(zhì)符號所表達(dá)數(shù)學(xué)含義的豐富性符號意義理解的相對性和辯證性基本初等函數(shù)(基本函數(shù)模型)數(shù)學(xué)閱讀技能自變量和為0時,函數(shù)值互為相反數(shù)自變量和為5時,函數(shù)值互為相反數(shù)問:函數(shù)f(x)具有哪些性質(zhì)?畫圖是一項(xiàng)基本數(shù)學(xué)技能!漸近線五點(diǎn)法數(shù)學(xué)作圖技能數(shù)學(xué)閱讀技能函數(shù) 定義域;值域;單調(diào)性;奇偶性;周期性;零點(diǎn);函數(shù)值分布;變化趨勢研究函數(shù)所關(guān)注的幾個方面:導(dǎo)數(shù)是研究函數(shù)的重要工具!從函數(shù)解析式進(jìn)行研究的方法:一是拆分轉(zhuǎn)化為基本初等函數(shù);二是利用導(dǎo)數(shù)工具上述分析之后可再一次梳理如下:函數(shù)數(shù)列解析幾何不等式方程函數(shù)零點(diǎn)的存在與分布函數(shù)值的分布連續(xù)函數(shù)的離

6、散化以坐標(biāo)系為基礎(chǔ)的數(shù)形聯(lián)系提供分界點(diǎn)函數(shù)與其它章節(jié)內(nèi)容的聯(lián)系函數(shù)與方程、不等式的聯(lián)系:導(dǎo)函數(shù)符號分布原函數(shù)的單調(diào)性導(dǎo)函數(shù)零點(diǎn)求出導(dǎo)函數(shù)原函數(shù)圖象導(dǎo)函數(shù)變化規(guī)律原函數(shù)值的分布在定義域上實(shí)現(xiàn)精細(xì)化特別注意:閉區(qū)間上已知函數(shù)單調(diào)性,便可知函數(shù)在其上值域;但是在開區(qū)間上僅知道單調(diào)性,不足以獲得函數(shù)在其上的值域!需要了解回顧與反思從整體上理解和把握高中數(shù)學(xué)內(nèi)容;從整體上理解數(shù)學(xué)活動的本質(zhì);對上述兩個整體把握是否已明其意?請大家想一想,何為復(fù)習(xí)活動之內(nèi)涵,何為數(shù)學(xué)復(fù)習(xí)教學(xué)的根本與核心呢?復(fù)習(xí)活動的內(nèi)涵復(fù)習(xí)主體學(xué)習(xí)者(學(xué)生)活動方式回憶、反思、梳理、實(shí)踐追求目標(biāo)獲得新(更本質(zhì))的理解與認(rèn)識,對所學(xué)知識、方

7、法及應(yīng)用融會貫通好象沒有教師的事!注意:在復(fù)習(xí)教學(xué)活動中教師才應(yīng)該出現(xiàn)!教師的作用:促!幫!領(lǐng)!北京二十中王曉青的教學(xué)案例通過學(xué)生“講”,能更好的把握學(xué)生學(xué)習(xí)的感受;通過學(xué)生“講”,能更好的分享學(xué)生思維的精彩,培養(yǎng)學(xué)生思維的創(chuàng)造性亦或彌補(bǔ)教學(xué)設(shè)計(jì)的不足我們想講給學(xué)生的,學(xué)生恰恰感覺是“變態(tài)”的方法,教師一廂情愿的講效果可想而知!但是,不應(yīng)該引領(lǐng)學(xué)生理解這種解法嗎?該解法有無價值?若有,那又該如何使學(xué)生感覺到它在“數(shù)學(xué)的思維推進(jìn)中”是“自然”的而非“變態(tài)”的?她本來并沒有算對,但是她堅(jiān)信自己的方法,還是主動的跟同學(xué)分享,在過程中,她說出了思考的路徑、觀察的角度、處理的技巧,并在老師和同學(xué)的監(jiān)督下

8、發(fā)現(xiàn)了自己的運(yùn)算錯誤,也讓很多中途放棄的同學(xué)豁然開朗;這同樣是我備課時不愿進(jìn)行下去的思路,當(dāng)聽完學(xué)生的分析講解,我也確實(shí)感受到了教學(xué)相長的樂趣。運(yùn)算技能如何練成的?以培養(yǎng)學(xué)生自主復(fù)習(xí)能力為目標(biāo)的復(fù)習(xí)課領(lǐng)悟知識梳理數(shù)學(xué)解題解題反思思維模式思維模式思維模式測試評析思維模式知識梳理的基本思維模式本章研究的對象是什么?本章是怎樣展開研究的?本章形成了哪些概念、公式和結(jié)論?本章最重要的概念、結(jié)論和方法是什么?它們的形成過程是怎樣的?(起源、背景、證明思路、表征與內(nèi)涵、特例與推廣、典型例題等)本章涉及的主要問題是什么?所需核心技能是什么?研究問題的核心思想方法是什么?內(nèi)省自己在本章學(xué)習(xí)中容易出現(xiàn)的問題是什

9、么?注意事項(xiàng)和改進(jìn)措施是什么?本章與其它章節(jié)的聯(lián)系是什么?突出核心概念(公式)輻射性呈現(xiàn)知識的內(nèi)在邏輯聯(lián)系例如:三角函數(shù)相關(guān)概念和公式的復(fù)習(xí)例如:集合與常用邏輯用語的復(fù)習(xí)集合基本關(guān)系元素與集合集合與集合含義表示描述法區(qū)間列舉法圖示特指符號基本運(yùn)算四種命題交并補(bǔ)充分充分必要條件必要充要全稱量詞存在量詞確定的研究對象構(gòu)成的總體互為逆否互為逆否互逆互逆且或非邏輯聯(lián)結(jié)詞互為逆否命題同真假直觀化集合與常用邏輯用語知識梳理基礎(chǔ)語言銳角三角函數(shù)定義任意角三角函數(shù)定義(三角函數(shù)線)三角函數(shù)圖象及性質(zhì)角的度量角的表示符號分布特殊角三角函數(shù)值同角關(guān)系式誘導(dǎo)關(guān)系式和差倍半角公式兩角差的余弦公式正弦型函數(shù)角的擴(kuò)充發(fā)揮

10、核心概念在知識網(wǎng)絡(luò)構(gòu)建中的作用直觀理解:僅從項(xiàng)看,數(shù)軸上的等距點(diǎn)列,故有對稱中心,點(diǎn)列的延伸表現(xiàn)為等距平移。從函數(shù)看,變化率恒定,均勻變化,為線性變化。蘊(yùn)含的數(shù)量關(guān)系:算數(shù)均值(等差中項(xiàng));距首尾等距的項(xiàng)的和為定值。數(shù)列內(nèi)涵 可列(離散+有序)思維方法歸納猜想函數(shù)思想化歸轉(zhuǎn)化方程思想通項(xiàng)求和表示符號記法表示方法解析法列表法圖象法通項(xiàng)公式遞推公式1.范例2.基礎(chǔ)等差數(shù)列等比數(shù)列兩個基本數(shù)列模型 定義(遞推)理解理解直觀理解:僅從項(xiàng)看,數(shù)軸上的等比例放縮點(diǎn)列,故有位似中心,點(diǎn)列的延伸表現(xiàn)為等比例伸縮。從函數(shù)看,成倍變化,具有指數(shù)函數(shù)特征。蘊(yùn)含的數(shù)量關(guān)系:幾何均值(等比中項(xiàng));距首尾等距的項(xiàng)的積為定

11、值。解題的基本思維模式判斷是否為熟悉的問題? 是,則類比改造套用,否,則確定問題所屬范疇有哪些關(guān)鍵詞或概念?逐一解讀其內(nèi)涵和外延?關(guān)注概念和結(jié)論表征的多樣性,基于解題任務(wù),進(jìn)行評估篩選、判斷,整合信息(尋求聯(lián)系-推理),獲得新認(rèn)識,重新表征問題。沿著發(fā)現(xiàn)的解題方向或途徑進(jìn)行嘗試,若受阻,分析障礙,進(jìn)行調(diào)整直至完成。數(shù)學(xué)解題思維模式基于概念理解提取信息基于目標(biāo)的聯(lián)系與整合題目中的概念概念蘊(yùn)含信息聯(lián)系聯(lián)想等差數(shù)列的本質(zhì)特性等差中項(xiàng)即算術(shù)平均值!什么是數(shù)學(xué)的思維?數(shù)學(xué)思維是基于概念的等差數(shù)列充分必要數(shù)軸上的等距點(diǎn)列可以用r表示出所有項(xiàng)似等差似等比確定推出關(guān)系抓住數(shù)列的核心思維特征歸納猜想驗(yàn)證獲解抓住

12、等差數(shù)列的本質(zhì)特征常值函數(shù)或一次函數(shù)抓住函數(shù)的核心思維特征解三角形角關(guān)系邊關(guān)系邊與角的關(guān)系正弦定理余弦定理大邊對大角其它量面積中線、垂線、角分線周長任意兩邊之和大于第三邊三邊二次式與角余弦的關(guān)系邊之比與角正弦之比的關(guān)系內(nèi)角和定理角的轉(zhuǎn)化變中的不變關(guān)系:立體幾何教學(xué)不能丟掉其核心教育價值!不能只教算法,而不講算理!思考:立體幾何的核心教學(xué)價值是什么?立體幾何問題為何能以空間向量實(shí)現(xiàn)算法化?點(diǎn)B,C為以A,D為焦點(diǎn),2a為長軸的橢球面上的兩點(diǎn)解題反思的基本思維模式檢驗(yàn)結(jié)論正確性,評估與條件的相符性,查看推理依據(jù)全面性用到了哪些知識、技能、方法?自己存在哪些不足?內(nèi)?。簷M向聯(lián)想類比多題一解,總結(jié)概括典型,完善形成解題策略拓展:(1)探尋其他解法,比較優(yōu)劣 ?培養(yǎng)直覺敏感性 (2)一題多變,變式提問,發(fā)散生成新問題,深化問題的構(gòu)成及求解策略 變中的不變關(guān)系:問題:0a1時,直線y=ax與y=ln(x+1)一定還有其它交點(diǎn)?反思解題過程,優(yōu)化解題思路,升華解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論