版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年河南省周口市淮陽縣重點達標名校中考全真模擬卷(二)數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在實數(shù)|﹣3|,﹣2,0,π中,最小的數(shù)是()A.|﹣3| B.﹣2 C.0 D.π2.如圖,在網(wǎng)格中,小正方形的邊長均為1,點A,B,C都在格點上,則∠ABC的正切值是()A. B.2 C. D.3.自1993年起,聯(lián)合國將每年的3月11日定為“世界水日”,宗旨是喚起公眾的節(jié)水意識,加強水資源保護.某校在開展“節(jié)約每一滴水”的活動中,從初三年級隨機選出10名學生統(tǒng)計出各自家庭一個月的節(jié)約用水量,有關數(shù)據(jù)整理如下表.節(jié)約用水量(單位:噸)11.11.411.5家庭數(shù)46531這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.4.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.45.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.6.平面直角坐標系中的點P(2﹣m,m)在第一象限,則m的取值范圍在數(shù)軸上可表示為()A. B.C. D.7.下列計算正確的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a(chǎn)2p÷a﹣p=a3p8.若代數(shù)式的值為零,則實數(shù)x的值為()A.x=0 B.x≠0 C.x=3 D.x≠39.《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得()A.B.C.D.10.已知電流I(安培)、電壓U(伏特)、電阻R(歐姆)之間的關系為,當電壓為定值時,I關于R的函數(shù)圖象是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個菱形,容易知道當兩張紙條垂直時,菱形的周長有最小值8,那么菱形周長的最大值是_________.12.計算(﹣a2b)3=__.13.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數(shù)為()A.144° B.84° C.74° D.54°14.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是15.布袋中裝有2個紅球和5個白球,它們除顏色外其它都相同.如果從這個布袋里隨機摸出一個球,那么所摸到的球恰好為紅球的概率是
________.16.對于實數(shù)a,b,定義運算“*”:a*b=,例如:因為4>2,所以4*2=42﹣4×2=8,則(﹣3)*(﹣2)=___________.17.如圖,用黑白兩種顏色的紙片,按黑色紙片數(shù)逐漸增加1的規(guī)律拼成如圖圖案,則第4個圖案中有__________白色紙片,第n個圖案中有__________張白色紙片.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:(﹣)÷,其中x的值從不等式組的整數(shù)解中選?。?9.(5分)如圖1,已知直線l:y=﹣x+2與y軸交于點A,拋物線y=(x﹣1)2+m也經(jīng)過點A,其頂點為B,將該拋物線沿直線l平移使頂點B落在直線l的點D處,點D的橫坐標n(n>1).(1)求點B的坐標;(2)平移后的拋物線可以表示為(用含n的式子表示);(3)若平移后的拋物線與原拋物線相交于點C,且點C的橫坐標為a.①請寫出a與n的函數(shù)關系式.②如圖2,連接AC,CD,若∠ACD=90°,求a的值.20.(8分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.21.(10分)先化簡,然后從中選出一個合適的整數(shù)作為的值代入求值.22.(10分)如圖,已知拋物線經(jīng)過,兩點,頂點為.(1)求拋物線的解析式;(2)將繞點順時針旋轉后,點落在點的位置,將拋物線沿軸平移后經(jīng)過點,求平移后所得圖象的函數(shù)關系式;(3)設(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標.23.(12分)△ABC內接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.24.(14分)某學校要印刷一批藝術節(jié)的宣傳資料,在需要支付制版費100元和每份資料0.3元印刷費的前提下,甲、乙兩個印刷廠分別提出了不同的優(yōu)惠條件.甲印刷廠提出:所有資料的印刷費可按9折收費;乙印刷廠提出:凡印刷數(shù)量超過200份的,超過部分的印刷費可按8折收費.(1)設該學校需要印刷藝術節(jié)的宣傳資料x份,支付甲印刷廠的費用為y元,寫出y關于x的函數(shù)關系式,并寫出它的定義域;(2)如果該學校需要印刷藝術節(jié)的宣傳資料600份,那么應該選擇哪家印刷廠比較優(yōu)惠?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
直接利用利用絕對值的性質化簡,進而比較大小得出答案.【詳解】在實數(shù)|-3|,-1,0,π中,|-3|=3,則-1<0<|-3|<π,故最小的數(shù)是:-1.故選B.此題主要考查了實數(shù)大小比較以及絕對值,正確掌握實數(shù)比較大小的方法是解題關鍵.2、A【解析】分析:連接AC,根據(jù)勾股定理求出AC、BC、AB的長,根據(jù)勾股定理的逆定理得到△ABC是直角三角形,根據(jù)正切的定義計算即可.詳解:連接AC,
由網(wǎng)格特點和勾股定理可知,
AC=,AC2+AB2=10,BC2=10,
∴AC2+AB2=BC2,
∴△ABC是直角三角形,
∴tan∠ABC=.點睛:考查的是銳角三角函數(shù)的定義、勾股定理及其逆定理的應用,熟記銳角三角函數(shù)的定義、掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形是解題的關鍵.3、D【解析】分析:中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.詳解:這組數(shù)據(jù)的中位數(shù)是;這組數(shù)據(jù)的眾數(shù)是1.1.故選D.點睛:本題屬于基礎題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力,要明確定義,一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).4、C【解析】
由角平分線的定義得到∠CBE=∠ABE,再根據(jù)線段的垂直平分線的性質得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據(jù)含30度的直角三角形三邊的關系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.5、C【解析】
作MH⊥AC于H,如圖,根據(jù)正方形的性質得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質得BM=MH=,則AB=2+,于是利用正方形的性質得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了角平分線的性質和正方形的性質.6、B【解析】
根據(jù)第二象限中點的特征可得:,解得:.在數(shù)軸上表示為:故選B.考點:(1)、不等式組;(2)、第一象限中點的特征7、D【解析】
直接利用合并同類項法則以及完全平方公式和整式的乘除運算法則分別計算即可得出答案.【詳解】解:A.﹣5x﹣2x=﹣7x,故此選項錯誤;B.(a+3)2=a2+6a+9,故此選項錯誤;C.(﹣a3)2=a6,故此選項錯誤;D.a(chǎn)2p÷a﹣p=a3p,正確.故選D.本題主要考查了合并同類項以及完全平方公式和整式的乘除運算,正確掌握運算法則是解題的關鍵.8、A【解析】
根據(jù)分子為零,且分母不為零解答即可.【詳解】解:∵代數(shù)式的值為零,∴x=0,此時分母x-3≠0,符合題意.故選A.本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為0,②分母的值不為0,這兩個條件缺一不可.9、D【解析】
根據(jù)題意可得等量關系:①9枚黃金的重量=11枚白銀的重量;②(10枚白銀的重量+1枚黃金的重量)-(1枚白銀的重量+8枚黃金的重量)=13兩,根據(jù)等量關系列出方程組即可.【詳解】設每枚黃金重x兩,每枚白銀重y兩,由題意得:,故選:D.此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系.10、C【解析】
根據(jù)反比例函數(shù)的圖像性質進行判斷.【詳解】解:∵,電壓為定值,∴I關于R的函數(shù)是反比例函數(shù),且圖象在第一象限,故選C.本題考查反比例函數(shù)的圖像,掌握圖像性質是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
畫出圖形,設菱形的邊長為x,根據(jù)勾股定理求出周長即可.【詳解】當兩張紙條如圖所示放置時,菱形周長最大,設這時菱形的邊長為xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,∴4x=1,
即菱形的最大周長為1cm.
故答案是:1.解答關鍵是怎樣放置紙條使得到的菱形的周長最大,然后根據(jù)圖形列方程.12、?a6b3【解析】
根據(jù)積的乘方和冪的乘方法則計算即可.【詳解】原式=(﹣a2b)3=?a6b3,故答案為?a6b3.本題考查了積的乘方和冪的乘方,關鍵是掌握運算法則.13、B【解析】正五邊形的內角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.14、4【解析】
當CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.本題考查矩形的判定和性質,垂徑定理,平行線的性質,此類問題是初中數(shù)學的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.15、2【解析】試題解析:∵一個布袋里裝有2個紅球和5個白球,∴摸出一個球摸到紅球的概率為:22+5考點:概率公式.16、-1.【解析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案為-1.17、133n+1【解析】分析:觀察圖形發(fā)現(xiàn):白色紙片在4的基礎上,依次多3個;根據(jù)其中的規(guī)律得出第n個圖案中有白色紙片即可.詳解:∵第1個圖案中有白色紙片3×1+1=4張第2個圖案中有白色紙片3×2+1=7張,第3圖案中有白色紙片3×3+1=10張,∴第4個圖案中有白色紙片3×4+1=13張第n個圖案中有白色紙片3n+1張,故答案為:13、3n+1.點睛:考查學生的探究能力,解題時必須仔細觀察規(guī)律,通過歸納得出結論.三、解答題(共7小題,滿分69分)18、-【解析】
先化簡,再解不等式組確定x的值,最后代入求值即可.【詳解】(﹣)÷,=÷=解不等式組,可得:﹣2<x≤2,∴x=﹣1,0,1,2,∵x=﹣1,0,1時,分式無意義,∴x=2,∴原式==﹣.19、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.【解析】
1)首先求得點A的坐標,再求得點B的坐標,用h表示出點D的坐標后代入直線的解析式即可驗證答案。(2)①根據(jù)兩種不同的表示形式得到m和h之間的函數(shù)關系即可。②點C作y軸的垂線,垂足為E,過點D作DF⊥CE于點F,證得△ACE~△CDF,然后用m表示出點C和點D的坐標,根據(jù)相似三角形的性質求得m的值即可?!驹斀狻拷猓海?)當x=0時候,y=﹣x+2=2,∴A(0,2),把A(0,2)代入y=(x﹣1)2+m,得1+m=2∴m=1.∴y=(x﹣1)2+1,∴B(1,1)(2)由(1)知,該拋物線的解析式為:y=(x﹣1)2+1,∵∵D(n,2﹣n),∴則平移后拋物線的解析式為:y=(x﹣n)2+2﹣n.故答案是:y=(x﹣n)2+2﹣n.(3)①∵C是兩個拋物線的交點,∴點C的縱坐標可以表示為:(a﹣1)2+1或(a﹣n)2﹣n+2由題意得(a﹣1)2+1=(a﹣n)2﹣n+2,整理得2an﹣2a=n2﹣n∵n>1∴a==.②過點C作y軸的垂線,垂足為E,過點D作DF⊥CE于點F∵∠ACD=90°,∴∠ACE=∠CDF又∵∠AEC=∠DFC∴△ACE∽△CDF∴=.又∵C(a,a2﹣2a+2),D(2a,2﹣2a),∴AE=a2﹣2a,DF=m2,CE=CF=a∴=∴a2﹣2a=1解得:a=±+1∵n>1∴a=>∴a=+1【點睛】本題主要考查二次函數(shù)的應用和相似三角形的判定與性質,需綜合運用各知識求解。20、見解析【解析】
(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.21、-1【解析】
先化簡,再選出一個合適的整數(shù)代入即可,要注意a的取值范圍.【詳解】解:,當時,原式.本題考查的是代數(shù)式的求值,熟練掌握代數(shù)式的化簡是解題的關鍵.22、(1)拋物線的解析式為.(2)平移后的拋物線解析式為:.(3)點的坐標為或.【解析】分析:(1)利用待定系數(shù)法,將點A,B的坐標代入解析式即可求得;(2)根據(jù)旋轉的知識可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋轉后C點的坐標為(3,1),當x=3時,由y=x2-3x+2得y=2,可知拋物線y=x2-3x+2過點(3,2)∴將原拋物線沿y軸向下平移1個單位后過點C.∴平移后的拋物線解析式為:y=x2-3x+1;(3)首先求得B1,D1的坐標,根據(jù)圖形分別求得即可,要注意利用方程思想.詳解:(1)已知拋物線經(jīng)過,,∴,解得,∴所求拋物線的解析式為.(2)∵,,∴,,可得旋轉后點的坐標為.當時,由得,可知拋物線過點.∴將原拋物線沿軸向下平移1個單位長度后過點.∴平移后的拋物線解析式為:.(3)∵點在上,可設點坐標為,將配方得,∴其對稱軸為.由題得B1(0,1).①當時,如圖①,∵,∴,∴,此時,∴點的坐標為.②當時,如圖②,同理可得,∴,此時,∴點的坐標為.綜上,點的坐標為或.點睛:此題屬于中考中的壓軸題,難度較大,知識點考查的較多而且聯(lián)系密切,需要學生認真審題.此題考查了二次函數(shù)與一次函數(shù)的綜合知識,解題的關鍵是要注意數(shù)形結合思想的應用.23、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】
(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023勞動者就業(yè)協(xié)議書內容七篇
- 2023雙方保密協(xié)議書七篇
- 協(xié)議書范本汽車
- 2023房子裝修雙方協(xié)議書七篇
- 新疆維吾爾自治區(qū)喀什地區(qū)疏勒縣實驗學校教育集團2023-2024學年七年級11月月考道德與法治試題(原卷版)-A4
- 2024秋新滬科版物理8年級上冊教學課件 第6章 熟悉而陌生的力 第3節(jié) 來自地球的力
- 2023年藥品包裝機械項目融資計劃書
- 2023年聚氨酯涂料項目融資計劃書
- 烹飪原料知識習題+參考答案
- 黑龍江省佳木斯市富錦市2024屆九年級上學期期末考試數(shù)學試卷(含答案)
- 詩經(jīng)導讀省公開課金獎全國賽課一等獎微課獲獎課件
- MOOC 攝影藝術創(chuàng)作-中國傳媒大學 中國大學慕課答案
- (正式版)SHT 3120-2024 石油化工噴射式混合器技術規(guī)范
- 智慧樹中國傳統(tǒng)繪畫賞析(廈門理工學院)章節(jié)測驗答案
- 【音樂】古琴與中國傳統(tǒng)文化
- 【生態(tài)攝影】揭示攝影在記錄生態(tài)與環(huán)境的價值與作用
- 北京市市屬醫(yī)院建筑合理用能指南
- 水產(chǎn)養(yǎng)殖投資計劃書
- 風電投資融資模式創(chuàng)新研究
- 體檢報告樣表
- 《外科護理》-關節(jié)脫位病人護理
評論
0/150
提交評論