2022屆云南省保山市隆陽區(qū)高三下第一次測試數(shù)學(xué)試題含解析_第1頁
2022屆云南省保山市隆陽區(qū)高三下第一次測試數(shù)學(xué)試題含解析_第2頁
2022屆云南省保山市隆陽區(qū)高三下第一次測試數(shù)學(xué)試題含解析_第3頁
2022屆云南省保山市隆陽區(qū)高三下第一次測試數(shù)學(xué)試題含解析_第4頁
2022屆云南省保山市隆陽區(qū)高三下第一次測試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù),則的大小關(guān)系是()A. B. C. D.2.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,,,是球的球面上四個不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.4.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.5.某中學(xué)2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該??忌纳龑W(xué)情況,統(tǒng)計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達(dá)線人數(shù)減少C.與2016年相比,2019年二本達(dá)線人數(shù)增加了0.3倍D.2016年與2019年藝體達(dá)線人數(shù)相同6.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.7.等差數(shù)列中,,,則數(shù)列前6項(xiàng)和為()A.18 B.24 C.36 D.728.函數(shù)的圖象可能為()A. B.C. D.9.已知集合,集合,則等于()A. B.C. D.10.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實(shí)數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)11.若函數(shù)的定義域?yàn)镸={x|-2≤x≤2},值域?yàn)镹={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.12.若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.0二、填空題:本題共4小題,每小題5分,共20分。13.復(fù)數(shù)為虛數(shù)單位)的虛部為__________.14.已知向量,,若,則________.15.在數(shù)列中,,則數(shù)列的通項(xiàng)公式_____.16.函數(shù)在的零點(diǎn)個數(shù)為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:()的左、右焦點(diǎn)分別為,,離心率為,且過點(diǎn).(1)求橢圓C的方程;(2)過左焦點(diǎn)的直線l與橢圓C交于不同的A,B兩點(diǎn),若,求直線l的斜率k.18.(12分)已知動圓恒過點(diǎn),且與直線相切.(1)求圓心的軌跡的方程;(2)設(shè)是軌跡上橫坐標(biāo)為2的點(diǎn),的平行線交軌跡于,兩點(diǎn),交軌跡在處的切線于點(diǎn),問:是否存在實(shí)常數(shù)使,若存在,求出的值;若不存在,說明理由.19.(12分)已知不等式的解集為.(1)求實(shí)數(shù)的值;(2)已知存在實(shí)數(shù)使得恒成立,求實(shí)數(shù)的最大值.20.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當(dāng)時,有兩個零點(diǎn),證明:.(參考數(shù)據(jù):)21.(12分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為過焦點(diǎn)且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點(diǎn).(1)求的值及該圓的方程;(2)設(shè)為上任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,證明:.22.(10分)已知的三個內(nèi)角所對的邊分別為,向量,,且.(1)求角的大?。唬?)若,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點(diǎn)睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.2.D【解析】

設(shè),整理得到方程組,解方程組即可解決問題.【詳解】設(shè),因?yàn)?,所以,所以,解得:,所以?fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,此點(diǎn)位于第四象限.故選D【點(diǎn)睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點(diǎn)知識,考查了方程思想,屬于基礎(chǔ)題.3.A【解析】

由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.4.A【解析】

對復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計算得到,從而得到虛部為2.【詳解】因?yàn)?,所以z的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計算過程要注意.5.A【解析】

設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過簡單的計算逐一驗(yàn)證選項(xiàng)A、B、C、D.【詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達(dá)線人數(shù),2016年二本達(dá)線人數(shù),增加了倍,故C錯誤;2016年藝體達(dá)線人數(shù),2019年藝體達(dá)線人數(shù),故D錯誤.故選:A.【點(diǎn)睛】本題考查柱狀圖的應(yīng)用,考查學(xué)生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.6.B【解析】

根據(jù)計算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【詳解】因?yàn)樵摮绦驁D是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點(diǎn)睛】本題考查了程序框圖的簡單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.7.C【解析】

由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項(xiàng)和公式可得結(jié)果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于基礎(chǔ)題.8.C【解析】

先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗(yàn)證求解.【詳解】因?yàn)?,所以是奇函?shù),故排除A,B,又,故選:C【點(diǎn)睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.9.B【解析】

求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點(diǎn)睛】該題考查的是有關(guān)集合的運(yùn)算的問題,涉及到的知識點(diǎn)有一元二次不等式的解法,集合的運(yùn)算,屬于基礎(chǔ)題目.10.C【解析】

求函數(shù)導(dǎo)數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點(diǎn)睛】本題主要考查了利用函數(shù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而研究函數(shù)的最值,屬于常考題型.11.B【解析】因?yàn)閷不符合定義域當(dāng)中的每一個元素都有象,即可排除;對B滿足函數(shù)定義,故符合;對C出現(xiàn)了定義域當(dāng)中的一個元素對應(yīng)值域當(dāng)中的兩個元素的情況,不符合函數(shù)的定義,從而可以否定;對D因?yàn)橹涤虍?dāng)中有的元素沒有原象,故可否定.故選B.12.C【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時函數(shù)取最大值為故答案選C【點(diǎn)睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最小;當(dāng)時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】試題分析:,即虛部為1,故填:1.考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算14.10【解析】

根據(jù)垂直得到,代入計算得到答案.【詳解】,則,解得,故,故.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學(xué)生的計算能力.15.【解析】

由題意可得,又,數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,對分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項(xiàng)公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項(xiàng)為首項(xiàng)為1,公差為2的等差數(shù)列,∴當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,則為奇數(shù),∴,∴數(shù)列的通項(xiàng)公式,故答案為:.【點(diǎn)睛】本題考查求數(shù)列的通項(xiàng)公式,解題關(guān)鍵是由已知遞推關(guān)系得出,從而確定數(shù)列的奇數(shù)項(xiàng)成等差數(shù)列,求出通項(xiàng)公式后再由已知求出偶數(shù)項(xiàng),要注意結(jié)果是分段函數(shù)形式.16.1【解析】

本問題轉(zhuǎn)化為曲線交點(diǎn)個數(shù)問題,在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】問題函數(shù)在的零點(diǎn)個數(shù),可以轉(zhuǎn)化為曲線交點(diǎn)個數(shù)問題.在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時,兩個函數(shù)只有一個交點(diǎn).故答案為:1【點(diǎn)睛】本題考查了求函數(shù)的零點(diǎn)個數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)直線l的斜率為或【解析】

(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設(shè)直線方程,與橢圓方程聯(lián)立,轉(zhuǎn)化為,借助向量的數(shù)量積的坐標(biāo)表示,及韋達(dá)定理即可求得結(jié)果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設(shè),,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線和橢圓的位置關(guān)系,考查學(xué)生的計算求解能力,難度一般.18.(1);(2)存在,.【解析】

(1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結(jié)合已知點(diǎn)的坐標(biāo),即可求得方程;(2)由拋物線方程求得點(diǎn)的坐標(biāo),設(shè)出直線的方程,利用導(dǎo)數(shù)求得點(diǎn)的坐標(biāo),聯(lián)立直線的方程和拋物線方程,結(jié)合韋達(dá)定理,求得,進(jìn)而求得與之間的大小關(guān)系,即可求得參數(shù).【詳解】(1)由題意得,點(diǎn)與點(diǎn)的距離始終等于點(diǎn)到直線的距離,由拋物線的定義知圓心的軌跡是以點(diǎn)為焦點(diǎn),直線為準(zhǔn)線的拋物線,則,.∴圓心的軌跡方程為.(2)因?yàn)槭擒壽E上橫坐標(biāo)為2的點(diǎn),由(1)不妨取,所以直線的斜率為1.因?yàn)?,所以設(shè)直線的方程為,.由,得,則在點(diǎn)處的切線斜率為2,所以在點(diǎn)處的切線方程為.由得所以,所以.由消去得,由,得且.設(shè),,則,.因?yàn)辄c(diǎn),,在直線上,所以,,所以,所以.∴故存在,使得.【點(diǎn)睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問題的求解,涉及導(dǎo)數(shù)的幾何意義,屬綜合性中檔題.19.(1);(2)4【解析】

(1)分類討論,求解x的范圍,取并集,得到絕對值不等式的解集,即得解;(2)轉(zhuǎn)化原不等式為:,利用均值不等式即得解.【詳解】(1)當(dāng)時不等式可化為當(dāng)時,不等式可化為;當(dāng)時,不等式可化為;綜上不等式的解集為.(2)由(1)有,,,,即而當(dāng)且僅當(dāng):,即,即時等號成立∴,綜上實(shí)數(shù)最大值為4.【點(diǎn)睛】本題考查了絕對值不等式的求解與不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20.(1);(2)證明見解析.【解析】

(1)求出函數(shù)的定義域?yàn)?,,分和兩種情況討論,分析函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得出關(guān)于實(shí)數(shù)的不等式,進(jìn)而可求得實(shí)數(shù)的取值范圍;(2)利用導(dǎo)數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構(gòu)造函數(shù),證明出,進(jìn)而得出,再由函數(shù)在區(qū)間上的單調(diào)性可證得結(jié)論.【詳解】(1)函數(shù)的定義域?yàn)椋?當(dāng)時,對任意的,,此時函數(shù)在上為增函數(shù),函數(shù)為最大值;當(dāng)時,令,得.當(dāng)時,,此時函數(shù)單調(diào)遞增;當(dāng)時,,此時函數(shù)單調(diào)遞減.所以,函數(shù)在處取得極大值,亦即最大值,即,解得.綜上所述,實(shí)數(shù)的取值范圍是;(2)當(dāng)時,,定義域?yàn)?,,?dāng)時,;當(dāng)時,.所以,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.由于函數(shù)有兩個零點(diǎn)、且,,,構(gòu)造函數(shù),其中,,令,,當(dāng)時,,所以,函數(shù)在區(qū)間上單調(diào)遞減,則,則.所以,函數(shù)在區(qū)間上單調(diào)遞減,,,即,即,,且,而函數(shù)在上為減函數(shù),所以,,因此,.【點(diǎn)睛】本題考查利用函數(shù)的最值求參數(shù),同時也考查了利用導(dǎo)數(shù)證明函數(shù)不等式,利用所證不等式的結(jié)構(gòu)構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力與計算能力,屬于難題.21.(1),圓的方程為:.(2)答案見解析【解析】

(1)根據(jù)題意,可知點(diǎn)的坐標(biāo)為,即可求出的值,即可求出該圓的方程;(2)由題易知,直線的斜率存在且不為0,設(shè)的方程為,與拋物線聯(lián)立方程組,根據(jù),求得,化簡解得,進(jìn)而求得點(diǎn)的坐標(biāo)為,分別求出,,利用向量的數(shù)量積為0,即可證出.【詳解】解:(1)易知點(diǎn)的坐標(biāo)為,所以,解得.又圓的圓心為,所以圓的方程為.(2)證明易知,直線的斜率存在且不為0,設(shè)的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點(diǎn)的坐標(biāo)為.所以,,.故.【點(diǎn)睛】本題考查拋物線的標(biāo)準(zhǔn)方程和圓的方程,考查直線和拋物線的位置關(guān)系,利用聯(lián)立方程組、求交點(diǎn)坐標(biāo)以及向量的數(shù)量積,考查解題能力和計算能力.22.(1)(2)【解析】

利用平面向量數(shù)量積的坐標(biāo)表示和二倍角的余弦公式得到關(guān)于的方程,解方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論