版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎的概率為()A. B. C. D.2.函數(shù)y=sin2x的圖象可能是A. B.C. D.3.公比為2的等比數(shù)列中存在兩項(xiàng),,滿足,則的最小值為()A. B. C. D.4.函數(shù)的圖像大致為()A. B.C. D.5.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.6.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.7.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.8.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.9.已知,則不等式的解集是()A. B. C. D.10.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.211.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切12.在中,角所對的邊分別為,已知,.當(dāng)變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在R上的函數(shù)滿足:①對任意的,都有;②當(dāng)時,,則函數(shù)的解析式可以是______________.14.已知雙曲線的一條漸近線為,則焦點(diǎn)到這條漸近線的距離為_____.15.在中,為定長,,若的面積的最大值為,則邊的長為____________.16.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點(diǎn)F,兩曲線的一個交點(diǎn)為P,若|FP|=5,則點(diǎn)F到雙曲線的漸近線的距離為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線上的任意一點(diǎn)到直線的距離比點(diǎn)到點(diǎn)的距離小1.(1)求動點(diǎn)的軌跡的方程;(2)若點(diǎn)是圓上一動點(diǎn),過點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,求直線斜率的取值范圍.18.(12分)已知數(shù)列和滿足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和.19.(12分)已知矩陣不存在逆矩陣,且非零特低值對應(yīng)的一個特征向量,求的值.20.(12分)已知,均為給定的大于1的自然數(shù),設(shè)集合,.(Ⅰ)當(dāng),時,用列舉法表示集合;(Ⅱ)當(dāng)時,,且集合滿足下列條件:①對任意,;②.證明:(?。┤簦瑒t(集合為集合在集合中的補(bǔ)集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設(shè),,,其中,,若,則.21.(12分)已知函數(shù),,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.22.(10分)網(wǎng)絡(luò)看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機(jī)器故障進(jìn)行查找詢問、診斷治療、檢查修復(fù)的一種新興的看病方式.因此,實(shí)地看病與網(wǎng)絡(luò)看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機(jī)構(gòu)調(diào)研了患者對網(wǎng)絡(luò)看病,實(shí)地看病的滿意程度,在每種看病方式的患者中各隨機(jī)抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡(luò)看病,實(shí)地看病兩種方式進(jìn)行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡(luò)看病、實(shí)地看病那種方式的滿意度更高?并說明理由;(2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:滿意不滿意總計網(wǎng)絡(luò)看病實(shí)地看病總計并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為患者看病滿意度與看病方式有關(guān)?(3)從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機(jī)抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計算能力,屬于基礎(chǔ)題.2、D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因?yàn)?,所以為奇函?shù),排除選項(xiàng)A,B;因?yàn)闀r,,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).3、D【解析】
根據(jù)已知條件和等比數(shù)列的通項(xiàng)公式,求出關(guān)系,即可求解.【詳解】,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.4、A【解析】
根據(jù)排除,,利用極限思想進(jìn)行排除即可.【詳解】解:函數(shù)的定義域?yàn)椋愠闪?,排除,,?dāng)時,,當(dāng),,排除,故選:.【點(diǎn)睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.5、C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識,是一道中檔題.6、B【解析】
根據(jù)計算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【詳解】因?yàn)樵摮绦驁D是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點(diǎn)睛】本題考查了程序框圖的簡單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.7、C【解析】
根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.8、B【解析】
由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個頂點(diǎn)坐標(biāo)的平均數(shù).9、A【解析】
構(gòu)造函數(shù),通過分析的單調(diào)性和對稱性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動一個單位得到,的定義域?yàn)?,且,所以為奇函?shù),圖像關(guān)于原點(diǎn)對稱,所以圖像關(guān)于對稱.不等式等價于,等價于,注意到,結(jié)合圖像關(guān)于對稱和單調(diào)遞增可知.所以不等式的解集是.故選:A【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對稱性解不等式,屬于中檔題.10、A【解析】
對函數(shù)求導(dǎo),可得,即可求出,進(jìn)而可求出答案.【詳解】因?yàn)?所以,則,解得,則.故選:A.【點(diǎn)睛】本題考查了函數(shù)的導(dǎo)數(shù)與極值,考查了學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.11、D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.12、C【解析】
因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、(或,答案不唯一)【解析】
由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【點(diǎn)睛】本題考查抽象函數(shù)的性質(zhì),涉及到由表達(dá)式確定函數(shù)奇偶性,是一道開放性的題,難度不大.14、2.【解析】
由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點(diǎn),利用點(diǎn)到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點(diǎn)為焦點(diǎn)到這條漸近線的距離為:本題正確結(jié)果:【點(diǎn)睛】本題考查了雙曲線和的標(biāo)準(zhǔn)方程及其性質(zhì),涉及到點(diǎn)到直線距離公式的考查,屬于基礎(chǔ)題.15、【解析】
設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,,利用求向量模的公式,可得,根據(jù)三角形面積公式進(jìn)一步求出的值即為所求.【詳解】解:設(shè),以為原點(diǎn),為軸建系,則,,設(shè),,則,即,由,可得.則.故答案為:.【點(diǎn)睛】本題考查向量模的計算,建系是關(guān)鍵,屬于難題.16、【解析】
設(shè)點(diǎn)為,由拋物線定義知,,求出點(diǎn)P坐標(biāo)代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式求解即可.【詳解】由題意得F(2,0),因?yàn)辄c(diǎn)P在拋物線y2=8x上,|FP|=5,設(shè)點(diǎn)為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因?yàn)閍2+b2=4,解得a=1,b=,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點(diǎn)到直線的距離公式可得,點(diǎn)F到雙曲線的漸近線的距離.故答案為:【點(diǎn)睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運(yùn)算求解能力和知識遷移能力;靈活運(yùn)用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)設(shè),根據(jù)題意可得點(diǎn)的軌跡方程滿足的等式,化簡即可求得動點(diǎn)的軌跡的方程;(2)設(shè)出切線的斜率分別為,切點(diǎn),,點(diǎn),則可得過點(diǎn)的拋物線的切線方程為,聯(lián)立拋物線方程并化簡,由相切時可得兩條切線斜率關(guān)系;由拋物線方程求得導(dǎo)函數(shù),并由導(dǎo)數(shù)的幾何意義并代入拋物線方程表示出,可求得,結(jié)合點(diǎn)滿足的方程可得的取值范圍,即可求得的范圍.【詳解】(1)設(shè)點(diǎn),∵點(diǎn)到直線的距離等于,∴,化簡得,∴動點(diǎn)的軌跡的方程為.(2)由題意可知,的斜率都存在,分別設(shè)為,切點(diǎn),,設(shè)點(diǎn),過點(diǎn)的拋物線的切線方程為,聯(lián)立,化簡可得,∴,即,∴,.由,求得導(dǎo)函數(shù),∴,,,∴,因?yàn)辄c(diǎn)滿足,由圓的性質(zhì)可得,∴,即直線斜率的取值范圍為.【點(diǎn)睛】本題考查了動點(diǎn)軌跡方程的求法,直線與拋物線相切的性質(zhì)及應(yīng)用,導(dǎo)函數(shù)的幾何意義及應(yīng)用,點(diǎn)和圓位置關(guān)系求參數(shù)的取值范圍,屬于中檔題.18、(1)見解析(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列.(2)由(1)求得數(shù)列的通項(xiàng)公式,判斷出,由此利用裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.【詳解】(1)所以數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列.(2)由(1)知,∴為常數(shù)列,且,∴,∴∴【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查裂項(xiàng)求和法,屬于中檔題.19、【解析】
由不存在逆矩陣,可得,再利用特征多項(xiàng)式求出特征值3,0,,利用矩陣乘法運(yùn)算即可.【詳解】因?yàn)椴淮嬖谀婢仃?,,所?矩陣的特征多項(xiàng)式為,令,則或,所以,即,所以,所以【點(diǎn)睛】本題考查矩陣的乘法及特征值、特征向量有關(guān)的問題,考查學(xué)生的運(yùn)算能力,是一道容易題.20、(Ⅰ);(Ⅱ)(?。┰斠娊馕觯áⅲ┰斠娊馕?(Ⅲ)詳見解析.【解析】
(Ⅰ)當(dāng),時,,,,,,.即可得出.(Ⅱ)(i)當(dāng)時,,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設(shè),,,,其中,,,2,,.,可得,通過求和即可證明結(jié)論.【詳解】(Ⅰ)解:當(dāng),時,,,,,..(Ⅱ)證明:(i)當(dāng)時,,2,3,,,又,,,,,,必然有,否則,而,與已知對任意,矛盾.因此有.(ii)..,為定值.(iii)由設(shè),,,,其中,,,2,,.,..【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式求和公式,考查了推理能力與計算能力,屬于難題.21、【解析】試題分析:先將問題“存在實(shí)數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實(shí)數(shù)使成立,等價于的最大值大于,因?yàn)?,由柯西不等式:,所以,?dāng)且僅當(dāng)時取“”,故常數(shù)的取值范圍是.考點(diǎn):柯西不等式即運(yùn)用和轉(zhuǎn)化與化歸的數(shù)學(xué)思想的運(yùn)用.22、(1)實(shí)地看病的滿意度更高,理由見解析;(2)列聯(lián)表見解析,有;(3).【解析】
(1)對實(shí)地看病滿意度更高,可以從莖葉圖四個方面選一個回答即可;(2)先完成列聯(lián)表,再由獨(dú)立性檢驗(yàn)得有的把握認(rèn)為患者看病滿意度與看病方式有關(guān);(3)利用古典概型的概率公式求得這2人平分都低于90分的概率.【詳解】(1)對實(shí)地看病滿意度更高,理由如下:(i)由莖葉圖可知:在網(wǎng)絡(luò)看病中,有的患者滿意度評分低于80分;在實(shí)地看病中,有的患
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 1 School life Reading B 說課稿 -2024-2025學(xué)年高一上學(xué)期英語上外版(2020)必修第一冊
- 2023六年級英語上冊 Review Module Unit 1說課稿 外研版(三起)
- 3 古詩詞三首《宿建德江》說課稿-2024-2025學(xué)年語文六年級上冊統(tǒng)編版
- 6《記錄我的一天》大單元整體設(shè)計(說課稿)-2024-2025學(xué)年一年級上冊數(shù)學(xué)北師大版
- 2024年春九年級語文下冊 第1課《國殤》說課稿4 長春版
- 2024秋五年級英語上冊 Unit 4 Jenny and Danny Come to China Lesson 21 What Year Is It說課稿 冀教版(三起)
- 2《找春天》說課稿-2023-2024學(xué)年二年級下冊語文統(tǒng)編版
- 2025【合同范本】抵押貸款合同范本
- 6《秋天的雨》說課稿-2024-2025學(xué)年統(tǒng)編版語文三年級上冊
- 2025學(xué)徒工勞動合同模板
- 項(xiàng)目重點(diǎn)難點(diǎn)分析及解決措施
- 挑戰(zhàn)杯-申報書范本
- 北師大版五年級上冊數(shù)學(xué)期末測試卷及答案共5套
- 電子商務(wù)視覺設(shè)計(第2版)完整全套教學(xué)課件
- 2024-2025學(xué)年人教版生物八年級上冊期末綜合測試卷
- 2025年九省聯(lián)考新高考 語文試卷(含答案解析)
- 第1課《春》公開課一等獎創(chuàng)新教案設(shè)計 統(tǒng)編版語文七年級上冊
- 全過程工程咨詢投標(biāo)方案(技術(shù)方案)
- 心理健康教育學(xué)情分析報告
- 安宮牛黃丸的培訓(xùn)
- 2024年人教版(新起點(diǎn))三年級英語下冊知識點(diǎn)匯總
評論
0/150
提交評論