云南省昆明市官渡區(qū)六校2024年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
云南省昆明市官渡區(qū)六校2024年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
云南省昆明市官渡區(qū)六校2024年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
云南省昆明市官渡區(qū)六校2024年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
云南省昆明市官渡區(qū)六校2024年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省昆明市官渡區(qū)六校2024年高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.底面是正方形,從頂點(diǎn)向底面作垂線,垂足是底面中心的四棱錐稱為正四棱錐.如圖,在正四棱錐中,底面邊長為1.側(cè)棱長為2,E為PC的中點(diǎn),則異面直線PA與BE所成角的余弦值為()A. B. C. D.2.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度3.設(shè),則“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件4.經(jīng)統(tǒng)計(jì)某射擊運(yùn)動員隨機(jī)命中的概率可視為,為估計(jì)該運(yùn)動員射擊4次恰好命中3次的概率,現(xiàn)采用隨機(jī)模擬的方法,先由計(jì)算機(jī)產(chǎn)生0到9之間取整數(shù)的隨機(jī)數(shù),用0,1,2沒有擊中,用3,4,5,6,7,8,9表示擊中,以4個隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根據(jù)以上數(shù)據(jù),則可估計(jì)該運(yùn)動員射擊4次恰好命中3次的概率為()A. B. C. D.5.已知扇形圓心角為,面積為,則扇形的弧長等于()A. B. C. D.6.已知向量,,若,,則的最大值為()A. B. C.4 D.57.若將一個質(zhì)點(diǎn)隨機(jī)投入如圖所示的長方形ABCD中,其中AB=2,BC=1,則質(zhì)點(diǎn)落在以AB為直徑的半圓內(nèi)的概率是()A. B. C. D.8.已知向量,則與的夾角為()A. B. C. D.9.的值()A.小于0 B.大于0 C.等于0 D.不小于010.設(shè)點(diǎn)M是直線上的一個動點(diǎn),M的橫坐標(biāo)為,若在圓上存在點(diǎn)N,使得,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.將無限循環(huán)小數(shù)化為分?jǐn)?shù),則所得最簡分?jǐn)?shù)為______;12.已知關(guān)于的不等式的解集為,則__________.13.已知向量,,若,則實(shí)數(shù)___________.14.函數(shù)的定義域記作集合,隨機(jī)地投擲一枚質(zhì)地均勻的正方體骰子(骰子的每個面上分別標(biāo)有點(diǎn)數(shù),,,),記骰子向上的點(diǎn)數(shù)為,則事件“”的概率為________.15.設(shè)表示不超過的最大整數(shù),則________16.點(diǎn)從點(diǎn)出發(fā),沿單位圓順時針方向運(yùn)動弧長到達(dá)點(diǎn),則點(diǎn)的坐標(biāo)為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)等比數(shù)列{}的首項(xiàng)為,公比為q(q為正整數(shù)),且滿足是與的等差中項(xiàng);數(shù)列{}滿足.(1)求數(shù)列{}的通項(xiàng)公式;(2)試確定的值,使得數(shù)列{}為等差數(shù)列:(3)當(dāng){}為等差數(shù)列時,對每個正整數(shù)是,在與之間插入個2,得到一個新數(shù)列{},設(shè)是數(shù)列{}的前項(xiàng)和,試求滿足的所有正整數(shù).18.在平面直角坐標(biāo)系中,已知,,動點(diǎn)滿足條件.(1)求點(diǎn)的軌跡的方程;(2)設(shè)點(diǎn)是點(diǎn)關(guān)于直線的對稱點(diǎn),問是否存在點(diǎn)同時滿足條件:①點(diǎn)在曲線上;②三點(diǎn)共線,若存在,求直線的方程;若不存在,請說明理由.19.在等差數(shù)列中,已知.(1)求通項(xiàng);(2)求的前項(xiàng)和.20.如圖是函數(shù)的部分圖象.(1)求函數(shù)的表達(dá)式;(2)若函數(shù)滿足方程,求在內(nèi)的所有實(shí)數(shù)根之和;(3)把函數(shù)的圖象的周期擴(kuò)大為原來的兩倍,然后向右平移個單位,再把縱坐標(biāo)伸長為原來的兩倍,最后向上平移一個單位得到函數(shù)的圖象.若對任意的,方程在區(qū)間上至多有一個解,求正數(shù)的取值范圍.21.已知向量滿足,,且向量與的夾角為.(1)求的值;(2)求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

可采用建立空間直角坐標(biāo)系的方法來求兩條異面直線所成的夾角,【詳解】如圖所示,以正方形ABCD的中心為坐標(biāo)原點(diǎn),DA方向?yàn)閤軸,AB方向?yàn)閥軸,OP為z軸,建立空間直角坐標(biāo)系,,,由幾何關(guān)系可求得,,,,為中點(diǎn),,,,答案選B.【點(diǎn)睛】解決異面直線問題常用兩種基本方法:異面直線轉(zhuǎn)化成共面直線、空間向量建系法2、A【解析】

先將轉(zhuǎn)化為,再判斷的符號即可得出結(jié)論.【詳解】解:因?yàn)?所以只需把向右平移個單位.故選:A【點(diǎn)睛】函數(shù)左右平移變換時,一是要注意平移方向:按“左加右減",如由的圖象變?yōu)榈膱D象,是由變?yōu)?所以是向左平移個單位;二是要注意前面的系數(shù)是不是,如果不是,左右平移時,要先提系數(shù),再來計(jì)算.3、A【解析】

“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.反之不能推出,可以舉出反例.【詳解】解:“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.充分性成立;反之不能推出,例如,數(shù)列滿足,但數(shù)列不是等比數(shù)列,即必要性不成立;故“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的充分非必要條件故選:.【點(diǎn)睛】本題考查了等比數(shù)列的定義、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.4、A【解析】

根據(jù)20組隨機(jī)數(shù)可知該運(yùn)動員射擊4次恰好命中3次的隨機(jī)數(shù)共8組,據(jù)此可求出對應(yīng)的概率.【詳解】由題意,該運(yùn)動員射擊4次恰好命中3次的隨機(jī)數(shù)為:7525,0347,7815,5550,6233,8045,3661,7424,共8組,則該運(yùn)動員射擊4次恰好命中3次的概率為.故答案為A.【點(diǎn)睛】本題考查了利用隨機(jī)模擬數(shù)表法求概率,考查了學(xué)生對基礎(chǔ)知識的掌握.5、C【解析】

根據(jù)扇形面積公式得到半徑,再計(jì)算扇形弧長.【詳解】扇形弧長故答案選C【點(diǎn)睛】本題考查了扇形的面積和弧長公式,解出扇形半徑是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力.6、A【解析】

設(shè),由可得點(diǎn)的軌跡方程,再對兩邊平方,利用一元二次函數(shù)的性質(zhì)求出最大值,即可得答案.【詳解】設(shè),,∵,∴,整理得:.∵,∴,當(dāng)時,的最大值為,∴的最大值為.故選:A.【點(diǎn)睛】本題考查向量模的最值、模的坐標(biāo)運(yùn)算、一元二次函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時注意坐標(biāo)法的運(yùn)用.7、B【解析】試題分析:本題是幾何概型問題,矩形面積2,半圓面積,所以質(zhì)點(diǎn)落在以AB為直徑的半圓內(nèi)的概率是,故選B.考點(diǎn):幾何概型.8、D【解析】

根據(jù)題意,由向量數(shù)量積的計(jì)算公式可得cosθ的值,據(jù)此分析可得答案.【詳解】設(shè)與的夾角為θ,由、的坐標(biāo)可得||=5,||=3,?5×0+5×(﹣3)=﹣15,故,所以.故選D【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)計(jì)算,涉及向量夾角的計(jì)算,屬于基礎(chǔ)題.9、A【解析】

確定各個角的范圍,由三角函數(shù)定義可確定正負(fù).【詳解】∵,∴,,,∴.故選:A.【點(diǎn)睛】本題考查各象限角三角函數(shù)的符號,掌握三角函數(shù)定義是解題關(guān)鍵.10、D【解析】

由題意畫出圖形,根據(jù)直線與圓的位置關(guān)系可得相切,設(shè)切點(diǎn)為P,數(shù)形結(jié)合找出M點(diǎn)滿足|MP|≤|OP|的范圍,從而得到答案.【詳解】由題意可知直線與圓相切,如圖,設(shè)直線x+y?2=0與圓相切于點(diǎn)P,要使在圓上存在點(diǎn)N,使得,使得最大值大于或等于時一定存在點(diǎn)N,使得,而當(dāng)MN與圓相切時,此時|MP|取得最大值,則有|MP|≤|OP|才能滿足題意,圖中只有在M1、M2之間才可滿足,∴的取值范圍是[0,2].故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,根據(jù)數(shù)形結(jié)合思想,畫圖進(jìn)行分析可得,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將設(shè)為,考慮即為,兩式相減構(gòu)造方程即可求解出的值,即可得到對應(yīng)的最簡分?jǐn)?shù).【詳解】設(shè),則,由可知,解得.故答案為:.【點(diǎn)睛】本題考查將無限循環(huán)小數(shù)化為最簡分?jǐn)?shù),主要采用方程的思想去計(jì)算,難度較易.12、-2【解析】為方程兩根,因此13、【解析】

由垂直關(guān)系可得數(shù)量積等于零,根據(jù)數(shù)量積坐標(biāo)運(yùn)算構(gòu)造方程求得結(jié)果.【詳解】,解得:故答案為:【點(diǎn)睛】本題考查根據(jù)向量垂直關(guān)系求解參數(shù)值的問題,關(guān)鍵是明確兩向量垂直,則向量數(shù)量積為零.14、【解析】要使函數(shù)有意義,則且,即且,即,隨機(jī)地投擲一枚質(zhì)地均勻的正方體骰子,記骰子向上的點(diǎn)數(shù)為,則,則事件“”的概率為.15、【解析】

根據(jù)1弧度約等于且正弦函數(shù)值域?yàn)?故可分別計(jì)算求和中的每項(xiàng)的正負(fù)即可.【詳解】故答案為:【點(diǎn)睛】本題主要考查了三角函數(shù)的計(jì)算,屬于基礎(chǔ)題型.16、【解析】

由題意可得OQ恰好是角的終邊,利用任意角的三角函數(shù)的定義,求得Q點(diǎn)的坐標(biāo).【詳解】點(diǎn)P從點(diǎn)出發(fā),沿單位圓順時針方向運(yùn)動弧長到達(dá)Q點(diǎn),則OQ恰好是角的終邊,故Q點(diǎn)的橫坐標(biāo),縱坐標(biāo)為,故答案為:【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,屬于容易題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】

(1)由已知可求出的值,從而可求數(shù)列的通項(xiàng)公式;(2)由已知可求,從而可依次寫出,,若數(shù)列為等差數(shù)列,則有,從而可確定的值;(3)因?yàn)?,,,檢驗(yàn)知,3,4不合題意,適合題意.當(dāng)時,若后添入的數(shù)則一定不適合題意,從而必定是數(shù)列中的某一項(xiàng),設(shè)則誤解,即有都不合題意.故滿足題意的正整數(shù)只有.【詳解】解(1)因?yàn)?,所以,解得或(舍),則又,所以(2)由,得,所以,,,則由,得而當(dāng)時,,由(常數(shù))知此時數(shù)列為等差數(shù)列(3)因?yàn)椋字缓项}意,適合題意當(dāng)時,若后添入的數(shù),則一定不適合題意,從而必是數(shù)列中的某一項(xiàng),則.整理得,等式左邊為偶數(shù),等式右邊為奇數(shù),所以無解。綜上:符合題意的正整數(shù).【點(diǎn)睛】本題主要考察了等差數(shù)列與等比數(shù)列的綜合應(yīng)用,考察了函數(shù)單調(diào)性的證明,屬于中檔題.18、(1);(2)存在點(diǎn),直線方程為.【解析】

(1)設(shè),由題意根據(jù)兩點(diǎn)間的距離公式即可求解.(2)假設(shè)存在點(diǎn)滿足題意,此時直線的方程為:.設(shè),,根據(jù)題意可得,求出,再將直線與圓聯(lián)立求出,根據(jù)向量共線的坐標(biāo)表示以及點(diǎn)在圓上,求出即可求解.【詳解】(1)設(shè),由得,整理得:,所以點(diǎn)的軌跡方程為.(2)假設(shè)存在點(diǎn)滿足題意,此時直線的方程為:.設(shè),.因?yàn)榕c關(guān)于直線對稱,所以解得即.由,得,即.此時,,,所以,所以當(dāng)時,三點(diǎn)共線.若在曲線上,則,整理得,即,所以,即.綜上所述,存在點(diǎn),滿足條件①②,此時直線方程為.【點(diǎn)睛】本小題主要考查坐標(biāo)法、圓的標(biāo)準(zhǔn)方程、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查抽象概括能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、整體運(yùn)算思想,化歸與轉(zhuǎn)化思想等.19、(1),(2)【解析】

(1)設(shè)出等差數(shù)列的基本量,首項(xiàng)和公差,根據(jù)條件列出方程組,解出和,寫出的通項(xiàng).(2)由(1)中求出的基本量,根據(jù)等差數(shù)列的求和公式,寫出【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,,解得(2)由(1)可知,【點(diǎn)睛】本題考查等差數(shù)列基本量計(jì)算,等差數(shù)列通項(xiàng)和求和的求法,屬于簡單題.20、(1)(2)答案不唯一,具體見解析(3)【解析】

(1)根據(jù)圖像先確定A,再確定,代入一個特殊點(diǎn)再確定.(2)根據(jù)(1)的結(jié)果結(jié)合圖像即可解決.(3)根據(jù)(1)的結(jié)果以及三角函數(shù)的變換求出即可解決.【詳解】解:(Ⅰ)由圖可知:,即,又由圖可知:是五點(diǎn)作圖法中的第三點(diǎn),,即.(Ⅱ)因?yàn)榈闹芷跒?,在?nèi)恰有個周期.⑴當(dāng)時,方程在內(nèi)有個實(shí)根,設(shè)為,結(jié)合圖像知,故所有實(shí)數(shù)根之和為;⑵當(dāng)時,方程在內(nèi)有個實(shí)根為,故所有實(shí)數(shù)根之和為;⑶當(dāng)時,方程在內(nèi)有個實(shí)根,設(shè)為,結(jié)合圖像知,故所有實(shí)數(shù)根之和為;綜上:當(dāng)時,方程所有實(shí)數(shù)根之和為;當(dāng)時,方程所有實(shí)數(shù)根之和為;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論