




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
神經(jīng)網(wǎng)絡(luò)與模糊系統(tǒng)學(xué)生:導(dǎo)師:ARCHITECTUREANDEQUILIBRIA
結(jié)構(gòu)和平衡CHAPTER6L函數(shù)與系統(tǒng)的穩(wěn)定性對于一個(gè)系統(tǒng)構(gòu)造一個(gè)Lyapunov方程若,系統(tǒng)穩(wěn)定若,系統(tǒng)漸進(jìn)穩(wěn)定系統(tǒng)穩(wěn)定能構(gòu)造L方程能構(gòu)造系統(tǒng)穩(wěn)定PREFACE李雅普諾夫切比雪夫馬爾科夫圣彼得堡數(shù)學(xué)學(xué)派6.1NeutralNetworkAsStochasticGradientsystem1.synapticconnectiontopologiesFeedforwardFeedback2.howlearningmodifiestheirconnectiontopologiesSupervised訓(xùn)練數(shù)據(jù)label特征模型訓(xùn)練a.訓(xùn)練測試數(shù)據(jù)特征模型labelb.測試Unsupervised2.howlearningmodifiestheirconnectiontopologies訓(xùn)練數(shù)據(jù)特征模型訓(xùn)練a.訓(xùn)練測試數(shù)據(jù)特征模型結(jié)果b.測試K-meansNEURALNETWORKTAXONOMYGRADIENTDESCENTLMSBACKPROPAGATIONREINFORCEMENTLEARNINGRECURRENTBACKPROPAGATIONVECTORQUANTIZATIONSELF-ORGANIZINGMAPSCOMPETITIVELEARNINGCOUNTER-PROPAGATIONBABAM
BROWNIANANNEALINGBOLTZMANNLEARNINGABAMART-2
BAM-COHEN-GROSSBERGMODELHOPFIELDCIRCUITBRAIN-STATE-IN-A-BOXMASKINGFILEDADAPTIVERESONANCEART-1ART-2FeedforwardFeedbackSupervisedUnsupervisedDECODINGEDCODING6.2GlobalEquilibria:convergenceandstabilityThreedynamicalsystemsinneuralnetwork:1)synapticdynamicalsystem2)neuronaldynamicalsystem3)jointneuronal-synapticdynamicalsystemEquilibriumissteadystate(forfixed-pointattractors).Convergenceissynapticequilibrium:Stabilityisneuronalequilibrium:Moregenerallyneuralsignalsreachsteadystateeventhoughtheactivationsstillchange.
Steadystate:GlobalStabilityStochasticGlobalStabilityStability-ConvergencedilemmaNeuronsfluctuatefasterthansynapsesfluctuate.Learningtendstodestroytheneuronalpatternsbeinglearned.Convergenceunderminesstability.6.3Synapticconvergencetocentroids:AVQAlgorithmsCompetitivelearningadaptivelyquantizestheinputpatternspace.Probabilitydensityfunctioncharacterizesthecontinuousdistributionsofpatternsin.CompetitiveAVQStochasticDifferentialEquations:Thedecisionclassespartitionintokclasses:Centroidof:Therandomindicatorfunctions:圖像處理質(zhì)心定位灰度質(zhì)心法灰度質(zhì)心法TheStochasticunsupervisedcompetitivelearninglaw:Equilibrium:AsdiscussedinChapter4:Thelinearstochasticcompetitivelearninglaw:Thelinearsupervisedcompetitivelearninglaw:Thelineardifferentialcompetitivelearninglaw:Inpractice:CompetitiveAVQAlgorithms1.Initializesynapticvectors:2.Forrandomsample,findtheclosestsynapticvector:3.Updatethewinningsynapticvector(s)bytheUCL,SCL,orDCLlearningalgorithm.UnsupervisedCompetitiveLearning(UCL)definesaslowlydecreasingsequenceoflearningcoefficients.Example:SupervisedCompetitiveLearning(SCL)DifferentialCompetitiveLearning(DCL)denotesthetimechangeofthejthneuron’scompetitivesignalinthecompetitionfield:實(shí)際中,只使用該信號差的符號或ThefixedcompetitionmatrixWdefinesasymmetriclateralinhibitionTopologywithin.StochasticEquilibriumandConvergenceCompetitivesynapticvectorconvergetodecision-classcentroids.Thecentroidsmaycorrespondtolocalmaximaofthesampledbutunknownprobabilitydensityfunction.AVQcentroidtheorem:IfacompetitiveAVQsystemconverges,itconvergestothecentroidofthesampleddecisionclass.Proof.Supposethejthneuroninwinsthecompetition.Supposethejthsynapticvectorcodesfordecisionclass.Suppose.Thecompetitivelaw.IngeneraltheAVQcentroidtheoremconcludesthatatequilibrium:Q.E.D6.4AVQConvergenceTheoremCompetitivesynapticvectorsconvergeexponentiallyquicklytopattern-classcentroids.Proof.ConsidertherandomquadraticformL:Note.Thepatternvectorsxdonotchangeintime.Thecompetitivelaw.ChosetheaverageE[L]asLyapunovfunctionforthestochasticcompetitivedynamicalsystem.Assume:sufficientsmoothnesstointerchangethetimederivativeandtheprobabilisticintegral—tobringthetimederivative“inside”theintegral.ThecompetitiveAVQsystemisasymptoticallystable,andingeneralconvergesexponentiallyquicklytoalocallyequilibrium.Suppose.Sincep(x)isanonnegativeweightfunction,theweightedintegralofthelearningdifferencesmustequalzero:Averageequilibriumsynapticvectorarecentroids:.Q.E.D6.5GlobalstabilityoffeedbackneuralnetworksGlobalstabilityisjointlyneuronal-synapticsteadystate.Globalstabilitytheoremsarepowerfulbutlimited.Theirpower:theirdimensionindependence.nonlineargenerality.theirexponentiallyfastconvergencetofixedpoints.Theirlimitation:nottelluswheretheequilibriaoccurinthestatespace.Stability-ConvergenceDilemma1.Asymmetry:NeuronsinandfluctuatefasterthanthesynapsesinM.2.Stability:(patternformation).
3.Learning:4.Undoing:TheABAMtheoremoffersageneralsolutiontostability-convergencedilemma.TheRABAMtheoremextendsthisresulttostochasticneuralprocessinginthepresenceofnoise.
6.6TheABAMTheoremHebbianABAMmodels:CompetitiveABAMmodels:Ifthepositivityassumptionshold,thenthemodelsareasymptoticallystable.Proof.TheproofusestheboundedlyapunovfunctionL:alongtrajectories.ProvesglobalstabilityforthecompetitiveABAMsystem.Thisprovesasymptoticglobalstability.Thesquaredvelocitiesdeceaseexponentiallyquickly.Q.E.DHigher-OrderABAMsAdaptiveResonanceABAMsDifferentialHebbianABAMs關(guān)鍵是找出解決問題的規(guī)律
6.7StructuralStabilityofUnsupervisedLearningIsunsupervisedlearningstructuralstability?StructuralstabilityisinsensitivitytosmallperturbationsStructuralstabilityignoresmanysmallperturbations.Suchperturbationspreservequalitativeproperties.Basinsofattractionsmaintaintheirbasicshape.PatternSpaceManifoldintersectionintheplane(manifold).Intersectionpointsaandbaretransversal.Pointcisnot:ManifoldsBandCneednotintersectifevenslightlyperturbed.Nopointsaretransversalin3-spaceunlessBisasphere(orothersolid).6.8RandomAdaptiveBidirectionalAssociativeMemoriesBrowniandiffusionsperturbRABAMmodels.SupposedenoteBrownian-motion(independentGaussianincrement)processesthatperturbstatechangesintheithneuronin,thejthneuronin,andthesynapse,respectively.ThediffusionRABAMcorrespondstotheadaptivestochasticdynamicalsystem:WecanreplacethesignalHebbdiffusionlawwiththestochasticcompetitivelaw,differentialHebbianordifferentialcompetitivediffusionlaws,ifweimposetighterconstrainstoensureglobalstability.Thesignal-HebbiannoiseRABAMmodel:TheRABAMtheoremensuresstochasticstability.Ineffect,RABAMequilibriaareABAMequilibriathatrandomlyvibrate.Thenoisevariancescontroltherangeofvibration.AverageRABAMbehaviorequalsABAMbehavior.RABAMTheorem.TheRABAMmodelaboveisglobalstable.Ifsignalfunctionsarestrictlyincreasingandamplificationfunctionsandarestrictlypositive,theRABAMmodelisasymptoticallystable.Proof.TheABAMlyapunovfunctionL:FortheRABAMsystem:alongtrajectoriesaccordingasQ.E.D6.9Noise-Satu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 節(jié)水技術(shù)的推廣與應(yīng)用計(jì)劃
- 確保企業(yè)形象的管理措施計(jì)劃
- 進(jìn)口醫(yī)療器械使用與管理計(jì)劃
- 增強(qiáng)社區(qū)兒童保護(hù)意識的個(gè)人方案計(jì)劃
- 健身教練技能提升計(jì)劃
- 班主任對學(xué)生品德培養(yǎng)的貢獻(xiàn)計(jì)劃
- 榮格游戲治療
- 《貴州恒睿礦業(yè)有限公司福泉市龍昌鎮(zhèn)順意煤礦(兼并重組)礦產(chǎn)資源綠色開發(fā)利用方案(三合一)》評審意見
- 檔案基本知識培訓(xùn)課件
- 第八章 走進(jìn)國家第一節(jié)日本(第1課時(shí))教學(xué)設(shè)計(jì)2023-2024學(xué)年下學(xué)期七年級地理下冊同步課堂系列(湘教版)
- 思想道德與法治教案第四章:明確價(jià)值要求踐行價(jià)值準(zhǔn)則
- 寧騷版《公共政策學(xué)》課后答案
- 氧氣安全標(biāo)簽
- 不經(jīng)歷風(fēng)雨怎么見彩虹》教學(xué)設(shè)計(jì)
- 二年級有余數(shù)的除法口算題1000道
- (綜合治理)修復(fù)工程指南(試行) - 貴州省重金屬污染防治與土壤修復(fù)網(wǎng)
- 員工就餐簽到表
- A-level項(xiàng)目介紹(課堂PPT)
- 航海計(jì)算軟件---ETA計(jì)算器
- 光伏電站運(yùn)維手冊
- 半導(dǎo)體及集成電路領(lǐng)域的撰寫及常見問題
評論
0/150
提交評論