神經(jīng)網(wǎng)絡(luò)與模糊系統(tǒng)-課件_第1頁
神經(jīng)網(wǎng)絡(luò)與模糊系統(tǒng)-課件_第2頁
神經(jīng)網(wǎng)絡(luò)與模糊系統(tǒng)-課件_第3頁
神經(jīng)網(wǎng)絡(luò)與模糊系統(tǒng)-課件_第4頁
神經(jīng)網(wǎng)絡(luò)與模糊系統(tǒng)-課件_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

神經(jīng)網(wǎng)絡(luò)與模糊系統(tǒng)學(xué)生:導(dǎo)師:ARCHITECTUREANDEQUILIBRIA

結(jié)構(gòu)和平衡CHAPTER6L函數(shù)與系統(tǒng)的穩(wěn)定性對于一個(gè)系統(tǒng)構(gòu)造一個(gè)Lyapunov方程若,系統(tǒng)穩(wěn)定若,系統(tǒng)漸進(jìn)穩(wěn)定系統(tǒng)穩(wěn)定能構(gòu)造L方程能構(gòu)造系統(tǒng)穩(wěn)定PREFACE李雅普諾夫切比雪夫馬爾科夫圣彼得堡數(shù)學(xué)學(xué)派6.1NeutralNetworkAsStochasticGradientsystem1.synapticconnectiontopologiesFeedforwardFeedback2.howlearningmodifiestheirconnectiontopologiesSupervised訓(xùn)練數(shù)據(jù)label特征模型訓(xùn)練a.訓(xùn)練測試數(shù)據(jù)特征模型labelb.測試Unsupervised2.howlearningmodifiestheirconnectiontopologies訓(xùn)練數(shù)據(jù)特征模型訓(xùn)練a.訓(xùn)練測試數(shù)據(jù)特征模型結(jié)果b.測試K-meansNEURALNETWORKTAXONOMYGRADIENTDESCENTLMSBACKPROPAGATIONREINFORCEMENTLEARNINGRECURRENTBACKPROPAGATIONVECTORQUANTIZATIONSELF-ORGANIZINGMAPSCOMPETITIVELEARNINGCOUNTER-PROPAGATIONBABAM

BROWNIANANNEALINGBOLTZMANNLEARNINGABAMART-2

BAM-COHEN-GROSSBERGMODELHOPFIELDCIRCUITBRAIN-STATE-IN-A-BOXMASKINGFILEDADAPTIVERESONANCEART-1ART-2FeedforwardFeedbackSupervisedUnsupervisedDECODINGEDCODING6.2GlobalEquilibria:convergenceandstabilityThreedynamicalsystemsinneuralnetwork:1)synapticdynamicalsystem2)neuronaldynamicalsystem3)jointneuronal-synapticdynamicalsystemEquilibriumissteadystate(forfixed-pointattractors).Convergenceissynapticequilibrium:Stabilityisneuronalequilibrium:Moregenerallyneuralsignalsreachsteadystateeventhoughtheactivationsstillchange.

Steadystate:GlobalStabilityStochasticGlobalStabilityStability-ConvergencedilemmaNeuronsfluctuatefasterthansynapsesfluctuate.Learningtendstodestroytheneuronalpatternsbeinglearned.Convergenceunderminesstability.6.3Synapticconvergencetocentroids:AVQAlgorithmsCompetitivelearningadaptivelyquantizestheinputpatternspace.Probabilitydensityfunctioncharacterizesthecontinuousdistributionsofpatternsin.CompetitiveAVQStochasticDifferentialEquations:Thedecisionclassespartitionintokclasses:Centroidof:Therandomindicatorfunctions:圖像處理質(zhì)心定位灰度質(zhì)心法灰度質(zhì)心法TheStochasticunsupervisedcompetitivelearninglaw:Equilibrium:AsdiscussedinChapter4:Thelinearstochasticcompetitivelearninglaw:Thelinearsupervisedcompetitivelearninglaw:Thelineardifferentialcompetitivelearninglaw:Inpractice:CompetitiveAVQAlgorithms1.Initializesynapticvectors:2.Forrandomsample,findtheclosestsynapticvector:3.Updatethewinningsynapticvector(s)bytheUCL,SCL,orDCLlearningalgorithm.UnsupervisedCompetitiveLearning(UCL)definesaslowlydecreasingsequenceoflearningcoefficients.Example:SupervisedCompetitiveLearning(SCL)DifferentialCompetitiveLearning(DCL)denotesthetimechangeofthejthneuron’scompetitivesignalinthecompetitionfield:實(shí)際中,只使用該信號差的符號或ThefixedcompetitionmatrixWdefinesasymmetriclateralinhibitionTopologywithin.StochasticEquilibriumandConvergenceCompetitivesynapticvectorconvergetodecision-classcentroids.Thecentroidsmaycorrespondtolocalmaximaofthesampledbutunknownprobabilitydensityfunction.AVQcentroidtheorem:IfacompetitiveAVQsystemconverges,itconvergestothecentroidofthesampleddecisionclass.Proof.Supposethejthneuroninwinsthecompetition.Supposethejthsynapticvectorcodesfordecisionclass.Suppose.Thecompetitivelaw.IngeneraltheAVQcentroidtheoremconcludesthatatequilibrium:Q.E.D6.4AVQConvergenceTheoremCompetitivesynapticvectorsconvergeexponentiallyquicklytopattern-classcentroids.Proof.ConsidertherandomquadraticformL:Note.Thepatternvectorsxdonotchangeintime.Thecompetitivelaw.ChosetheaverageE[L]asLyapunovfunctionforthestochasticcompetitivedynamicalsystem.Assume:sufficientsmoothnesstointerchangethetimederivativeandtheprobabilisticintegral—tobringthetimederivative“inside”theintegral.ThecompetitiveAVQsystemisasymptoticallystable,andingeneralconvergesexponentiallyquicklytoalocallyequilibrium.Suppose.Sincep(x)isanonnegativeweightfunction,theweightedintegralofthelearningdifferencesmustequalzero:Averageequilibriumsynapticvectorarecentroids:.Q.E.D6.5GlobalstabilityoffeedbackneuralnetworksGlobalstabilityisjointlyneuronal-synapticsteadystate.Globalstabilitytheoremsarepowerfulbutlimited.Theirpower:theirdimensionindependence.nonlineargenerality.theirexponentiallyfastconvergencetofixedpoints.Theirlimitation:nottelluswheretheequilibriaoccurinthestatespace.Stability-ConvergenceDilemma1.Asymmetry:NeuronsinandfluctuatefasterthanthesynapsesinM.2.Stability:(patternformation).

3.Learning:4.Undoing:TheABAMtheoremoffersageneralsolutiontostability-convergencedilemma.TheRABAMtheoremextendsthisresulttostochasticneuralprocessinginthepresenceofnoise.

6.6TheABAMTheoremHebbianABAMmodels:CompetitiveABAMmodels:Ifthepositivityassumptionshold,thenthemodelsareasymptoticallystable.Proof.TheproofusestheboundedlyapunovfunctionL:alongtrajectories.ProvesglobalstabilityforthecompetitiveABAMsystem.Thisprovesasymptoticglobalstability.Thesquaredvelocitiesdeceaseexponentiallyquickly.Q.E.DHigher-OrderABAMsAdaptiveResonanceABAMsDifferentialHebbianABAMs關(guān)鍵是找出解決問題的規(guī)律

6.7StructuralStabilityofUnsupervisedLearningIsunsupervisedlearningstructuralstability?StructuralstabilityisinsensitivitytosmallperturbationsStructuralstabilityignoresmanysmallperturbations.Suchperturbationspreservequalitativeproperties.Basinsofattractionsmaintaintheirbasicshape.PatternSpaceManifoldintersectionintheplane(manifold).Intersectionpointsaandbaretransversal.Pointcisnot:ManifoldsBandCneednotintersectifevenslightlyperturbed.Nopointsaretransversalin3-spaceunlessBisasphere(orothersolid).6.8RandomAdaptiveBidirectionalAssociativeMemoriesBrowniandiffusionsperturbRABAMmodels.SupposedenoteBrownian-motion(independentGaussianincrement)processesthatperturbstatechangesintheithneuronin,thejthneuronin,andthesynapse,respectively.ThediffusionRABAMcorrespondstotheadaptivestochasticdynamicalsystem:WecanreplacethesignalHebbdiffusionlawwiththestochasticcompetitivelaw,differentialHebbianordifferentialcompetitivediffusionlaws,ifweimposetighterconstrainstoensureglobalstability.Thesignal-HebbiannoiseRABAMmodel:TheRABAMtheoremensuresstochasticstability.Ineffect,RABAMequilibriaareABAMequilibriathatrandomlyvibrate.Thenoisevariancescontroltherangeofvibration.AverageRABAMbehaviorequalsABAMbehavior.RABAMTheorem.TheRABAMmodelaboveisglobalstable.Ifsignalfunctionsarestrictlyincreasingandamplificationfunctionsandarestrictlypositive,theRABAMmodelisasymptoticallystable.Proof.TheABAMlyapunovfunctionL:FortheRABAMsystem:alongtrajectoriesaccordingasQ.E.D6.9Noise-Satu

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論