版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)(其中為自然對數(shù)的底數(shù)),則的大致圖象為()A. B. C. D.2.正方體中,直線與所成角的余弦值為()A. B. C. D.3.設(shè)x,y滿足約束條件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目標函數(shù)z=abx+y(a,A.2 B.4 C.6 D.84.下列各角中與角終邊相同的角是A. B. C. D.5.若,,則與向量同向的單位向量是()A. B. C. D.6.如圖,某船在A處看見燈塔P在南偏東方向,后來船沿南偏東的方向航行30km后,到達B處,看見燈塔P在船的西偏北方向,則這時船與燈塔的距離是:A.10kmB.20kmC.D.7.在正方體中,為棱的中點,則異面直線與所成角的正切值為A. B. C. D.8.等差數(shù)列的首項為.公差不為,若成等比數(shù)列,則數(shù)列的前項和為()A. B. C. D.9.已知橢圓的方程為(),如果直線與橢圓的一個交點在軸上的射影恰好是橢圓的右焦點,則的值為()A.2 B.2 C.4 D.810.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知正實數(shù)x,y滿足,則的最小值為________.12.設(shè)為使互不重合的平面,是互不重合的直線,給出下列四個命題:①②③④若;其中正確命題的序號為.13.過點直線與軸的正半軸,軸的正半軸分別交于、兩點,為坐標原點,當(dāng)最小時,直線的一般方程為______.14.已知{}是等差數(shù)列,是它的前項和,且,則____.15.若,則________.16.?dāng)?shù)列滿足:,,的前項和記為,若,則實數(shù)的取值范圍是________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)矩形的周長為,把沿向折疊,折過去后交于,設(shè),的面積為.(1)求的解析式及定義域;(2)求的最大值.18.如圖,在四邊形中,已知,,,,設(shè).(1)求(用表示);(2)求的最小值.(結(jié)果精確到米)19.甲乙兩地生產(chǎn)某種產(chǎn)品,他們可以調(diào)出的數(shù)量分別為300噸、750噸.A,B,C三地需要該產(chǎn)品數(shù)量分別為200噸,450噸,400噸,甲地運往A,B,C三地的費用分別為6元/噸、3元/噸,5元/噸,乙地運往A,B,C三地的費用分別為5元/噸,9元/噸,6元/噸,問怎樣調(diào)運,才能使總運費最???20.已知函數(shù),且.(1)求的值;(2)若在上有且只有一個零點,,求的取值范圍.21.(1)從某廠生產(chǎn)的一批零件1000個中抽取20個進行研究,應(yīng)采用什么抽樣方法?(2)對(1)中的20個零件的直徑進行測量,得到下列不完整的頻率分布表:(單位:mm)分組頻數(shù)頻率268合計201①完成頻率分布表;②畫出其頻率分布直方圖.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】令,,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又令,所以有兩個零點,因為,,所以,且當(dāng)時,,,當(dāng)時,,,當(dāng)時,,,選項C滿足條件.故選C.點睛:本題考查函數(shù)的解析式和圖象的關(guān)系、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;已知函數(shù)的解析式識別函數(shù)圖象是高考常見題型,往往從定義域、奇偶性(對稱性)、單調(diào)性、最值及特殊點的符號進行驗證,逐一驗證進行排除.2、C【解析】
作出相關(guān)圖形,通過平行將異面直線所成角轉(zhuǎn)化為共面直線所成角.【詳解】作出相關(guān)圖形,由于,所以直線與所成角即為直線與所成角,由于為等邊三角形,于是所成角余弦值為,故答案選C.【點睛】本題主要考查異面直線所成角的余弦值,難度不大.3、B【解析】
畫出不等式組對應(yīng)的平面區(qū)域,平移動直線至1,4時z有最大值8,再利用基本不等式可求a+b的最小值.【詳解】原不等式組表示的平面區(qū)域如圖中陰影部分所示,當(dāng)直線z=abx+y(a,b>0)過直線2x-y+2=0與直線8x-y-4=0的交點1,4時,目標函數(shù)z=abx+y(a,即ab=4,所以a+b≥2ab=4,當(dāng)且僅當(dāng)a=b=2時,等號成立.所以【點睛】二元一次不等式組的條件下的二元函數(shù)的最值問題,常通過線性規(guī)劃來求最值,求最值時往往要考二元函數(shù)的幾何意義,比如3x+4y表示動直線3x+4y-z=0的橫截距的三倍,而y+2x-1則表示動點Px,y與4、B【解析】
根據(jù)終邊相同角的概念,即可判斷出結(jié)果.【詳解】因為,所以與是終邊相同的角.故選B【點睛】本題主要考查終邊相同的角,熟記有關(guān)概念即可,屬于基礎(chǔ)題型.5、A【解析】
先求出的坐標,然后即可算出【詳解】因為,所以所以與向量同向的單位向量是故選:A【點睛】本題考查的是向量的坐標運算,屬于基礎(chǔ)題6、C【解析】
在中,利用正弦定理求出得長,即為這時船與燈塔的距離,即可得到答案.【詳解】由題意,可得,即,在中,利用正弦定理得,即這時船與燈塔的距離是,故選C.【點睛】本題主要考查了正弦定理,等腰三角形的判定與性質(zhì),以及特殊角的三角函數(shù)值的應(yīng)用,其中熟練掌握正弦定理是解答本題的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、C【解析】
利用正方體中,,將問題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長為,則由為棱的中點,可得,所以,則.故選C.【點睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因為直線夾角為銳角,所以②對應(yīng)的余弦取絕對值即為直線所成角的余弦值.8、A【解析】
根據(jù)等比中項定義可得;利用和表示出等式,可構(gòu)造方程求得;利用等差數(shù)列求和公式求得結(jié)果.【詳解】由題意得:設(shè)等差數(shù)列公差為,則即:,解得:本題正確選項:【點睛】本題考查等差數(shù)列基本量的計算,涉及到等比中項、等差數(shù)列前項和公式的應(yīng)用;關(guān)鍵是能夠構(gòu)造方程求出公差,屬于??碱}型.9、A【解析】
首先求解交點的坐標,再根據(jù)橢圓的性質(zhì)可知點的坐標是,再代入橢圓方程,解的值.【詳解】設(shè)焦點,代入直線,可得,由橢圓性質(zhì)可知,,解得或(舍),.故選A.【點睛】本題考查了橢圓的基本性質(zhì),考查計算能力,屬于基礎(chǔ)題型.10、A【解析】
根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】
將變形為,展開,利用基本不等式求最值.【詳解】解:,當(dāng)時等號成立,又,得,此時等號成立,故答案為:4.【點睛】本題考查基本不等式求最值,特別是掌握“1”的妙用,是基礎(chǔ)題.12、④【解析】試題分析:根據(jù)線面平行的判定定理,面面平行的判定定理,面面平行的性質(zhì)定理,及面面垂直的性質(zhì)定理,對題目中的四個結(jié)論逐一進行分析,即可得到答案.解:當(dāng)m∥n,n?α,,則m?α也可能成立,故①錯誤;當(dāng)m?α,n?α,m∥β,n∥β,m與n相交時,α∥β,但m與n平行時,α與β不一定平行,故②錯誤;若α∥β,m?α,n?β,則m與n可能平行也可能異面,故③錯誤;若α⊥β,α∩β=m,n?α,n⊥m,由面面平行的性質(zhì),易得n⊥β,故④正確故答案為④考點:本題考查的知識點是平面與平面之間的位置關(guān)系,直線與平面之間的位置關(guān)系.點評:熟練掌握空間線與線,線與面,面與面之間的關(guān)系的判定方法及性質(zhì)定理,是解答本題的關(guān)鍵,屬于基礎(chǔ)題.13、【解析】
設(shè)直線的截距式方程為,利用該直線過可得,再利用基本不等式可求何時即取最小值,從而得到相應(yīng)的直線方程.【詳解】設(shè)直線的截距式方程為,其中且.因為直線過,故.所以,由基本不等式可知,當(dāng)且僅當(dāng)時等號成立,故當(dāng)取最小值時,直線方程為:.填.【點睛】直線方程有五種形式,常用的形式有點斜式、斜截式、截距式、一般式,垂直于的軸的直線沒有點斜式、斜截式和截距式,垂直于軸的直線沒有截距式,注意根據(jù)題設(shè)所給的條件選擇合適的方程的形式,特別地,如果考慮的問題是與直線、坐標軸圍成的直角三角形有關(guān)的問題,可考慮利用截距式.14、【解析】
根據(jù)等差數(shù)列的性質(zhì)得,由此得解.【詳解】解:由題意可知,;同理。故.故答案為:【點睛】本題考查了等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.15、【解析】
先求,再代入求值得解.【詳解】由題得所以.故答案為【點睛】本題主要考查共軛復(fù)數(shù)和復(fù)數(shù)的模的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.16、【解析】
因為數(shù)列有極限,故考慮的情況.又數(shù)列分兩組,故分組求和求極限即可.【詳解】因為,故,且,故,又,即.綜上有.故答案為:【點睛】本題主要考查了數(shù)列求和的極限,需要根據(jù)題意分組求得等比數(shù)列的極限,再利用不等式找出參數(shù)的關(guān)系,屬于中等題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的最大值為.【解析】
(1)利用周長,可以求出的長,利用平面幾何的知識可得,再利用勾股定理,可以求出的值,由矩形的周長為,可求出的取值范圍,最后利用三角形面積公式求出的解析式;(2)化簡(1)的解析式,利用基本不等式,可以求出的最大值.【詳解】(1)如下圖所示:∵設(shè),則,又,即,∴,得,∵,∴,∴的面積.(2)由(1)可得,,當(dāng)且僅當(dāng),即時取等號,∴的最大值為,此時.【點睛】本題考查了求函數(shù)解析式,考查了基本不等式,考查了數(shù)學(xué)運算能力.18、(1);(2)米【解析】
(1)在中,由正弦定理,求得,再在中,利用正弦定理,即可求得的表達式;(2)在中,由正弦定理,求得,進而可得到,利用三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,在中,,由正弦定理,可得,即,在中,,由正弦定理,可得,即,(2)在中,由正弦定理,可得,即所以因為,所以所以當(dāng)時,取得最小值最小值約為米.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關(guān)系,熟練掌握定理、合理運用是解本題的關(guān)鍵.通常當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時,運用余弦定理求解.19、甲到B調(diào)運300噸,從乙到A調(diào)運200噸,從乙到B調(diào)運150噸,從乙到C調(diào)運400噸,總運費最小【解析】
設(shè)從甲到A調(diào)運噸,從甲到B調(diào)運噸,則由題設(shè)可得,總的費用為,利用線性規(guī)劃可求目標函數(shù)的最小值.【詳解】設(shè)從甲到A調(diào)運噸,從甲到B調(diào)運噸,從甲到C調(diào)運噸,則從乙到A調(diào)運噸,從乙到B調(diào)運噸,從乙到C調(diào)運噸,設(shè)調(diào)運的總費用為元,則.由已知得約束條件為,可行域如圖所示,平移直線可得最優(yōu)解為.甲到B調(diào)運300噸,從乙到A調(diào)運200噸,從乙到B調(diào)運150噸,從乙到C調(diào)運400噸,總運費最小.【點睛】本題考查線性規(guī)劃在實際問題中的應(yīng)用,屬于基礎(chǔ)題.20、(1)(2)【解析】
(1)利用降次公式、輔助角公式化簡表達式,利用求得的值.(2)令,結(jié)合的取值范圍以及三角函數(shù)的零點列不等式,解不等式求得的取值范圍.【詳解】(1),,,即.(2)令,則,,,在上有且只有一個零點,,,的取值范圍為.【點睛】本小題主要考查三角恒等變換,考查三角函數(shù)零點問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.21、(1)系統(tǒng)抽樣;(2)①分布表見解析;②直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版無人駕駛汽車測試協(xié)議
- 二零二四年度LED路燈購銷合同協(xié)議書3篇
- 二零二五年度餐飲行業(yè)營銷推廣服務(wù)合同3篇
- 2024版履約擔(dān)保公司履約擔(dān)保管理系統(tǒng)
- 2025年生態(tài)小區(qū)綠化水資源利用承包合同3篇
- 建筑碗扣支架出租合同(2025版)3篇
- 2024路演合同范本:路演活動應(yīng)急預(yù)案合同3篇
- 二零二五年度環(huán)??萍妓幚砑夹g(shù)與應(yīng)用合同3篇
- 二零二五版防盜門品牌加盟與區(qū)域經(jīng)營合同3篇
- 2025年度旅游度假村麻石景觀設(shè)計與施工合同4篇
- 化工園區(qū)危險品運輸車輛停車場建設(shè)標準
- 氧氣霧化吸入法
- 6月大學(xué)英語四級真題(CET4)及答案解析
- 氣排球競賽規(guī)則
- 電梯維修保養(yǎng)報價書模板
- 危險化學(xué)品目錄2023
- FZ/T 81024-2022機織披風(fēng)
- GB/T 33141-2016鎂鋰合金鑄錠
- JJF 1069-2012 法定計量檢定機構(gòu)考核規(guī)范(培訓(xùn)講稿)
- 綜合管廊工程施工技術(shù)概述課件
- 公積金提取單身聲明
評論
0/150
提交評論