2022-2023學年安徽省阜陽市臨泉縣第一中學數(shù)學高一下期末預測試題含解析_第1頁
2022-2023學年安徽省阜陽市臨泉縣第一中學數(shù)學高一下期末預測試題含解析_第2頁
2022-2023學年安徽省阜陽市臨泉縣第一中學數(shù)學高一下期末預測試題含解析_第3頁
2022-2023學年安徽省阜陽市臨泉縣第一中學數(shù)學高一下期末預測試題含解析_第4頁
2022-2023學年安徽省阜陽市臨泉縣第一中學數(shù)學高一下期末預測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,是夾角為的兩個單位向量,則與的夾角為()A. B. C. D.2.已知數(shù)列{an}滿足a1=1,an+1=pan+q,且a2=3,a4=15,則p,q的值為()A. B. C.或 D.以上都不對3.已知數(shù)列的前n項和為,且滿足,則()A.1 B. C. D.20164.設有直線m、n和平面、.下列四個命題中,正確的是()A.若m∥,n∥,則m∥nB.若m,n,m∥,n∥,則∥C.若,m,則mD.若,m,m,則m∥5.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,若,,則一定是()A.直角三角形 B.鈍角三角形 C.等腰直角三角形 D.等邊三角形6.經(jīng)過,兩點的直線方程為()A. B. C. D.7.不等式的解集是()A. B.C.或 D.或8.如圖,圓的半徑為1,是圓上的定點,是圓上的動點,角的始邊為射線,終邊為射線,過點作直線的垂線,垂足為,將點到直線的距離表示成的函數(shù),則在上的圖象大致為()A. B.C. D.9.已知圓:關于直線對稱的圓為圓:,則直線的方程為A. B. C. D.10.是等差數(shù)列的前n項和,如果,那么的值是()A.12 B.24 C.36 D.48二、填空題:本大題共6小題,每小題5分,共30分。11.在中,內(nèi)角,,的對邊分別為,,.若,,成等比數(shù)列,且,則________.12.______.13.若函數(shù)的圖像與直線有且僅有四個不同的交點,則的取值范圍是______14.設公比為q(q>0)的等比數(shù)列{an}的前n項和為{Sn}.若,,則q=______________.15.已知向量,,則在方向上的投影為______.16.設等差數(shù)列的前項和為,若,,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知直線和.(1)若,求實數(shù)的值;(2)若,求實數(shù)的值.18.解關于的方程:19.某校高二年級共有800名學生參加2019年全國高中數(shù)學聯(lián)賽江蘇賽區(qū)初賽,為了解學生成績,現(xiàn)隨機抽取40名學生的成績(單位:分),并列成如下表所示的頻數(shù)分布表:分組頻數(shù)⑴試估計該年級成績不低于90分的學生人數(shù);⑵成績在的5名學生中有3名男生,2名女生,現(xiàn)從中選出2名學生參加訪談,求恰好選中一名男生一名女生的概率.20.如圖所示,某住宅小區(qū)的平面圖是圓心角為120°的扇形,小區(qū)的兩個出入口設置在點及點處,且小區(qū)里有一條平行于的小路,已知某人從沿走到用了10分鐘,從沿走到用了6分鐘,若此人步行的速度為每分鐘50米,求該扇形的半徑的長.21.已知數(shù)列的前項和為.(1)求這個數(shù)列的通項公式;(2)若,求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)條件可求出,,從而可求出,這樣即可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】由題得;,,所以;;又;的夾角為.故選.【點睛】考查向量數(shù)量積的運算及計算公式,向量長度的求法,向量夾角的余弦公式,向量夾角的范圍.2、C【解析】

根據(jù)數(shù)列的遞推公式得、建立方程組求得.【詳解】由已知得:所以解得:或.故選C.【點睛】本題考查數(shù)列的遞推公式,屬于基礎題.3、C【解析】

利用和關系得到數(shù)列通項公式,代入數(shù)據(jù)得到答案.【詳解】已知數(shù)列的前n項和為,且滿足,相減:取答案選C【點睛】本題考查了和關系,數(shù)列的通項公式,意在考查學生的計算能力.4、D【解析】

當兩條直線同時與一個平面平行時,兩條直線之間的關系不能確定,故A不正確,B選項再加上兩條直線相交的條件,可以判斷面與面平行,故B不正確,C選項再加上m垂直于兩個平面的交線,得到線面垂直,故C不正確,D選項中由α⊥β,m⊥β,m,可得m∥α,故是正確命題,故選D5、D【解析】

利用余弦定理、等邊三角形的判定方法即可得出.【詳解】由余弦定理得,則,即,所以.∵∴是等邊三角形.故選D.【點睛】本題考查了余弦定理、等邊三角形的判定方法,考查了推理能力與計算能力,熟練掌握余弦定理是解答本題的關鍵.6、C【解析】

根據(jù)題目條件,選擇兩點式來求直線方程.【詳解】由兩點式直線方程可得:化簡得:故選:C【點睛】本題主要考查了直線方程的求法,還考查了運算求解的能力,屬于基礎題.7、B【解析】

由題意,∴,即,解得,∴該不等式的解集是,故選.8、B【解析】

計算函數(shù)的表達式,對比圖像得到答案.【詳解】根據(jù)題意知:到直線的距離為:對應圖像為B故答案選B【點睛】本題考查了三角函數(shù)的應用,意在考查學生的應用能力.9、A【解析】

根據(jù)對稱性,求得,求得圓的圓心坐標,再根據(jù)直線l為線段C1C2的垂直平分線,求得直線的斜率,即可求解,得到答案.【詳解】由題意,圓的方程,可化為,根據(jù)對稱性,可得:,解得:或(舍去,此時半徑的平方小于0,不符合題意),此時C1(0,0),C2(-1,2),直線C1C2的斜率為:,由圓C1和圓C2關于直線l對稱可知:直線l為線段C1C2的垂直平分線,所以,解得,直線l又經(jīng)過線段C1C2的中點(,1),所以直線l的方程為:,化簡得:,故選A【點睛】本題主要考查了圓與圓的位置關系的應用,其中解答中熟記兩圓的位置關系,合理應用圓對稱性是解答本題的關鍵,其中著重考查了推理與運算能力,屬于基礎題.10、B【解析】

由等差數(shù)列的性質(zhì):若m+n=p+q,則即可得.【詳解】故選B【點睛】本題考查等比數(shù)列前n項和的求解和性質(zhì)的應用,是基礎題型,解題中要注意認真審題,注意下標的變化規(guī)律,合理地進行等價轉(zhuǎn)化.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

A,B,C是三角形內(nèi)角,那么,代入等式中,進行化簡可得角A,C的關系,再由,,成等比數(shù)列,根據(jù)正弦定理,將邊的關系轉(zhuǎn)化為角的關系,兩式相減可得關于的方程,解方程即得.【詳解】因為,所以,所以.因為,,成等比數(shù)列,所以,所以,則,整理得,解得.【點睛】本題考查正弦定理和等比數(shù)列運用,有一定的綜合性.12、【解析】

,,故答案為.考點:三角函數(shù)誘導公式、切割化弦思想.13、【解析】

將函數(shù)寫成分段函數(shù)的形式,再畫出函數(shù)的圖象,則直線與函數(shù)圖象有四個交點,從而得到的取值范圍.【詳解】因為因為所以,所以圖象關于對稱,其圖象如圖所示:因為直線與函數(shù)圖象有四個交點,所以.故答案為:.【點睛】本題考查利用三角函數(shù)圖象研究與直線交點個數(shù),考查數(shù)形結合思想的應用,作圖時發(fā)現(xiàn)圖象關于對稱,是快速畫出圖象的關鍵.14、【解析】將,兩個式子全部轉(zhuǎn)化成用,q表示的式子.即,兩式作差得:,即:,解之得:(舍去)15、【解析】

由平面向量投影的定義可得出在方向上的投影為,從而可計算出結果.【詳解】設平面向量與的夾角為,則在方向上的投影為.故答案為:.【點睛】本題考查平面向量投影的計算,熟悉平面向量投影的定義是解題的關鍵,考查計算能力,屬于基礎題.16、10【解析】

將和用首項和公差表示,解方程組,求出首項和公式,利用公式求解.【詳解】設該數(shù)列的公差為,由題可知:,解得,故.故答案為:10.【點睛】本題考查由基本量計算等差數(shù)列的通項公式以及前項和,屬基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)借助兩直線垂直的充要條件建立方程求解;(2)借助兩直線平行充要條件建立方程求解.【詳解】(1)若,則.(2)若,則或2.經(jīng)檢驗,時,與重合,時,符合條件,∴.【點晴】解析幾何是運用代數(shù)的方法和知識解決幾何問題一門學科,是數(shù)形結合的典范,也是高中數(shù)學的重要內(nèi)容和高考的熱點內(nèi)容.解答本題時充分運用和借助題設條件中的垂直和平行條件,建立了含參數(shù)的直線的方程,然后再運用已知條件進行分析求解,從而將問題進行轉(zhuǎn)化和化歸,進而使問題獲解.如本題的第一問中求參數(shù)的值時,是直接運用垂直的充要條件建立方程,這是方程思想的運用;再如第二問中求參數(shù)的值時也是運用了兩直線平行的條件,但要注意的是這個條件不是兩直線平行的充要條件,所以一定代回進行檢驗,這也是學生經(jīng)常會出現(xiàn)錯誤的地方.18、【解析】

根據(jù)方程解出或,利用三角函數(shù)的定義解出,再根據(jù)終邊相同角的表示即可求出.【詳解】由,得,所以或,所以或,所以的解集為:.【點睛】本題考查了三角方程的解法,終邊相同角的表示,反三角函數(shù)的定義,考查計算能力,屬于基礎題.19、(1)300人;(2)【解析】

(1)由頻數(shù)分布表可得40人中成績不低于90分的學生人數(shù)為15人,由此可計算出該年級成績不低于90分的學生人數(shù);(2)根據(jù)題意寫出所有的基本事件,確定基本事件的個數(shù),即可計算出恰好選中一名男生一名女生的概率.【詳解】⑴40名學生中成績不低于90分的學生人數(shù)為15人;所以估計該年級成績不低于90分的學生人數(shù)為⑵分別記男生為1,2,3號,女生為4,5號,從中選出2名學生,有如下基本事件(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)因此,共有10個基本事件,上述10個基本事件發(fā)生的可能性相同,且只有6個基本事件是選中一名男生一名女生(記為事件),即(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)∴【點睛】本題考查頻率分布表以及古典概型的概率計算,,考查學生的運算能力,屬于基礎題.20、【解析】

連接,由題意,得米,米,,在△中,由余弦定理可得答案.【詳解】設該扇形的半徑為米,連接,如圖所示:由題意,得米,米,,在△中,由余弦定理得,即,解得米.答:該扇形的半徑的長為米.【點睛】本題考查了利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論