版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
OverviewOverviewPart1:ReviewofObjectTracking?SingleObjectTracking(SOT)?VideoObjectSegmentation(VOS)?MultipleObjectTracking(MOT)?Multi-ObjectTrackingandSegmentation(MOTS)?SummaryPart2:TowardsGrandUnificationofObjectTracking?GeneralVisionModels(GVM)?UnificationofObjectTracking?Unicorn?Experiments?FurtherAnalysis PartPart1:ReviewofObjectTracking?SingleObjectTracking(SOT)?VideoObjectSegmentation(VOS)?MultipleObjectTracking(MOT)?Multi-ObjectTrackingandSegmentation(MOTS) SingleSingleObjectTracking(SOT)TrackanarbitraryobjectinavideogivenitsinitiallocationSingle-object,Any-classOcclusion,LightChange,BackgroundClutter,etc. zCorrHead !Online !Head !TransformerzHeadxfffSingleObjectTrackingzCorrHead !Online !Head !TransformerzHeadxfffSingleObjectTracking(SOT)SiameseRPNf !fx?SiamRPN(CVPR18)?DaSiamRPN(ECCV18)?SiameRPN++(CVPR19)?Ocean(ECCV20)zDCFx?ATOM(CVPR19)?DiMP(ICCV19)?PrDiMP(CVPR20)?KYS(ECCV20)f !fTransf !f?TransT(CVPR21)?STARK(ICCV21)MostSOTmethodsarebasedonthesearchregion.Pros:Cons:?SavingcomputationV.S?Sensitivetotemporarytrackingfailure?Filteringoutdistractors?Time-consumingwhennumofobjectsislarge UnsupervisedVOSReferringUnsupervisedVOSReferringVOSVideoObjectSegmentation(VOS)nGoalnSegmentspecificobjectspreciselyinavideo.SegmentsalientmovingobjectSemi-supervisedVOSSegmentobjectsgiveninthe1stframebymasksSegmentobjectsgiveninthe1stframebylanguageSTM(ICCVSTM(ICCV19)CFBI(ECCV20)STCN(NeurIPS21)VideoObjectSegmentation(VOS)Semi-supervisedVOSisdominatedbySpace-TimeMemoryNetworkAlthoughachievinggreatperformance,STM-basedmethodssufferfromthefollowingdisadvantages:?Hugetimeandspacecomplexity,especiallyforhighspatialresolutionandthelongsequence.?Highlyrelyingonhigh-qualitymaskannotationsonthefirstframe.MultipleObjectMultipleObjectTracking(MOT)nGoalnTrackallobjectsofspecificclassesinavideo.MOTChallengeBDD100KVisdrone(1class:Person)(8classes:Car,pedestrian,etc)(10classes:Car,pedestrian,etc)ParadigmParadigmMultipleObjectTracking(MOT)RepresentativeMethodsuTrackingbyDetectionuTrackingbyDetection(SORT,DeepSORT,StrongSORT)uJointDetectionandTrackinguJointDetectionandTracking(JDE,FairMOT,CenterTrack,QDTrack)(TrackFormer,GTR)MOTmethodstakesthehigh-resolutionwholeimageastheinputtodetectobjectsascompletelyaspossible.Multi-ObjectTrackingandSegmentation(MOTS)nGoalnSegmentallobjectsofspecificclassesinavideo.MOTSChallengeBDD100KMOTS(1class:Person)(8classes:Car,pedestrian,etc)MOTScanbeseenasavariantofMOTbyreplacingboxeswithmasks.SummarSummaryReferenceOutputsClassTrackspervideoRepresentativeMethodsTypicalInputsSOTInitialboxBoxesagnosticOneOne-ShotDetectionSmallsearchregionVOSInitialmaskMasksagnosticSeveralSTMMedium-resolutionWholeImageMOTNOBoxesspecificTensorhundredsDetection+AssociationHigh-resolutionWholeImageMOTSNOMasksspecificTensorhundredsDetection+AssociationHigh-resolutionWholeImagettherearelargegapsbetweenthefourtrackingtasks?GeneralVisionModels(GVM)?UnificationofObjectTracking?Unicorn?Experiments?FurtherAnalysis entAIvsAGI–CurrentweakAIisdesignedforsolvingonespecifictask.–Artificialgeneralintelligence(AGI)isexpectedtounderstandorlearnanyintellectualtaskthatahumanbeingcan. ?Pioneeringworksinthepastyear2021.082021.112021.112022.01ies Threeobstacleshinderingtheunification:(1)Thecharacteristicsoftrackedobjectsvary(onetargetofanyclassgiveninthereferenceframev.stensevenhundredsofinstancesofspecificcategories)(2)SOTandMOTrequiredifferenttypesofcorrespondence.(pixel-levelcorrespondencedistinguishingthetargetfromthebackgroundv.sinstance-levelcorrespondencematchingthecurrentlydetectedobjectswithprevioustrajectories)(3)DifferentInputs.(smallsearchregiontosavecomputationandfilterpotentialdistractorsv.shigh-resolutionfullimagefordetectinginstancesascompleteaspossible) ?WeproposeUnicorn,aunifiedsolutionforSOT,MOT,VOSandMOTS.?Unicornaccomplishesthegreatunificationofthenetworkarchitectureandthelearningparadigmforfourtrackingtasks.?Unicornputsforwardsnewstate-of-the-artperformanceonmultiplechallengingtrackingbenchmarkswiththesamemodelparameters. Unifiedinputsandbackbone?Takingthefullimagesasinputsforalltasks.?Referenceframeisthe1stframeforSOT&VOSandthe(t-1)thframeforMOT&MOTS?Oneunifiedbackbone(ConvNeXtbydefault)ErefeRhwxcEcureRhwxcCpixeRhwxhwForMOT&MOTS,TheinstanceembeddingeisextractedfromtheframeembeddingE,wherethecenteroftheinstanceislocatederefeRMxc,ecureRNxcCinsteRNxMCinstisthesub-matrixofCpixLearninghighlydiscriminativeembedding{Eref,Ecur}isthekeytobuildingprecisecorrespondenceforalltrackingtasks.Aninteractionmoduleisusedtoenhancedtheoriginalimagefeature.Bydefaultweusethedeformableattentionblockforinteraction.LearningCorrespondencebyPropagation&LearningCorrespondencebyPropagation&Association.?ForSOT&VOS,Correspondencehelpstopropagatethetargetmapfromthereferenceframetothecurrentframe.?ForMOT&MOTS,Correspondencehelpstomatchthedetectionsonthecurrentframewiththetrajectoriesonthereferenceframe.Weintroducethetargetpriorastheswitchamongfourtrackingtasks.?ForSOT&VOS,thetargetpriorcanenhancetheoriginalFPNfeatureandmakesthenetworkfocusonthetrackedtarget.?ForMOT&MOTS,thefusedfeatureF′degeneratesbacktotheoriginalFPNfeatureFtodetectobjectsofspecificclasses.ObjectObjectdetectionheadbasedonYOLOXandCondInst?One-stage,anchor-free?NoRoIoperationssuchasRoI-AlignYOLOXHeadforobjectdetectionCondInstHeadforinstancesegmentationAddthemaskbranchandfreezeotherparametersStage1Target:Correspondence+DetectionLoss:Lstage1=Lcorr+LdetData:1:1fromSOT&MOTSOT:weuseCOCO,LaSOT,GOT-10KandTrackingNetMOT:?ForMOT17,weuseCrowdhuman,ETHZ,CityPerson,MOT17?ForBDD100K,weuseBDD100KStage2Target:MaskLoss:Lstage2=LmaskData:1:1fromVOS&MOTSVOS:weuseCOCO,DAVIS,Youtube-VOSMOTS:?ForMOTS,weuseCOCOandMOTS?ForBDD100K,weuseBDD100K?TrainingofVOS&MOTSwouldnotimpacttheperformanceofSOT&MOT.ForuserswhoareonlyinterestedintheSOT&MOT,runningStage1isenough.?Ineachstage,wetrainthemodel
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 普通合伙人合同協(xié)議參考
- 拆墻協(xié)議合同范本2024年
- 商場臨時租賃協(xié)議
- 原料配送代理合同
- 工程機械租憑合同書樣式
- 交通意外保險合同范本
- 2024年承包房屋建筑合同范本
- 出口買方信貸貸款協(xié)議
- 搜索引擎服務合同示例
- 專利代理委托協(xié)議書
- 作文題記PPT課件
- 初三化學上冊第二單元知識點總結
- 天津報建手續(xù)流程
- 形式發(fā)票格式2 INVOICE
- 環(huán)境法律糾紛案例ppt課件
- 軟件測試大作業(yè)(共23頁)
- 《藝用透視學》教案
- 變壓器磁芯參數表匯總
- 威斯敏斯特小要理問答(修正版)
- 制動系統(tǒng)設計計算報告
- 04-04寰樞關節(jié)錯位型頸椎病
評論
0/150
提交評論