版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小明解方程的過程如下,他的解答過程中從第()步開始出現(xiàn)錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④2.如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a(chǎn)= B.a(chǎn)=2b C.a(chǎn)=b D.a(chǎn)=3b3.如圖,由四個正方體組成的幾何體的左視圖是()A. B. C. D.4.如圖,不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.5.-3的倒數(shù)是()A.3 B.13 C.-16.已知關(guān)于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或7.如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°8.不透明袋子中裝有一個幾何體模型,兩位同學(xué)摸該模型并描述它的特征.甲同學(xué):它有4個面是三角形;乙同學(xué):它有8條棱.該模型的形狀對應(yīng)的立體圖形可能是()A.三棱柱 B.四棱柱 C.三棱錐 D.四棱錐9.在下列交通標志中,是中心對稱圖形的是()A. B.C. D.10.古希臘著名的畢達哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+3111.有若干個完全相同的小正方體堆成一個如圖所示幾何體,若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個數(shù)為()A.2 B.3 C.4 D.512.已知:如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點G、D,若△AGC的周長為31cm,AB=20cm,則△ABC的周長為()A.31cm B.41cm C.51cm D.61cm二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,?ABCD中,AC⊥CD,以C為圓心,CA為半徑作圓弧交BC于E,交CD的延長線于點F,以AC上一點O為圓心OA為半徑的圓與BC相切于點M,交AD于點N.若AC=9cm,OA=3cm,則圖中陰影部分的面積為_____cm1.14.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三點都在y=的圖象上,則yl,y2,y3的大小關(guān)系是_____.(用“<”號填空)15.同時擲兩個質(zhì)地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率為.16.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點,則下列結(jié)論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設(shè)AB=a,MN=b,則≥1﹣1.17.如圖,在△ABC中,AB=AC,BE、AD分別是邊AC、BC上的高,CD=2,AC=6,那么CE=________.18.如圖,四邊形ACDF是正方形,和都是直角,且點三點共線,,則陰影部分的面積是__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在銳角△ABC中,小明進行了如下的尺規(guī)作圖:①分別以點A、B為圓心,以大于12AB的長為半徑作弧,兩弧分別相交于點P、Q②作直線PQ分別交邊AB、BC于點E、D.小明所求作的直線DE是線段AB的;聯(lián)結(jié)AD,AD=7,sin∠DAC=17,BC=9,求AC20.(6分)如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;(2)把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;(3)如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.21.(6分)已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)設(shè)點M在拋物線的對稱軸上,當△MAC是以AC為直角邊的直角三角形時,求點M的坐標.22.(8分)某種型號油電混合動力汽車,從A地到B地燃油行駛需純?nèi)加唾M用76元,從A地到B地用電行駛需純用電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.求每行駛1千米純用電的費用;若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少需用電行駛多少千米?23.(8分)如圖所示,點B、F、C、E在同一直線上,AB⊥BE,DE⊥BE,連接AC、DF,且AC=DF,BF=CE,求證:AB=DE.24.(10分)某同學(xué)報名參加學(xué)校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率P為;該同學(xué)從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;該同學(xué)從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.25.(10分)如圖,一盞路燈沿?zé)粽诌吘壣涑龅墓饩€與地面BC交于點B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請用圓規(guī)和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數(shù)據(jù):≈1.414,≈1.732).26.(12分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立.說明理由.(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=6,AD=BD=1.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設(shè)點P的運動時間為t(秒),當DC的長與△ABD底邊上的高相等時,求t的值.27.(12分)網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.請根據(jù)圖中的信息,回答下列問題:(1)這次抽樣調(diào)查中共調(diào)查了人;(2)請補全條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是;(4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【點睛】本題考查解分式方程,解答本題的關(guān)鍵是明確解分式方程的方法.2、B【解析】
從圖形可知空白部分的面積為S2是中間邊長為(a﹣b)的正方形面積與上下兩個直角邊為(a+b)和b的直角三角形的面積,再與左右兩個直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【點睛】本題主要考查了求陰影部分面積和因式分解,關(guān)鍵是正確列出陰影部分與空白部分的面積和正確進行因式分解.3、B【解析】從左邊看可以看到兩個小正方形摞在一起,故選B.4、B【解析】
首先分別解出兩個不等式,再確定不等式組的解集,然后在數(shù)軸上表示即可.【詳解】解:解第一個不等式得:x>-1;解第二個不等式得:x≤1,在數(shù)軸上表示,故選B.【點睛】此題主要考查了解一元一次不等式組,以及在數(shù)軸上表示解集,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<“>”要用空心圓點表示.5、C【解析】
由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C6、A【解析】
根據(jù)方程有兩個相等的實數(shù)根結(jié)合根的判別式即可得出關(guān)于k的方程,解之即可得出結(jié)論.【詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關(guān)鍵.7、B【解析】
解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關(guān)系.8、D【解析】試題分析:根據(jù)有四個三角形的面,且有8條棱,可知是四棱錐.而三棱柱有兩個三角形的面,四棱柱沒有三角形的面,三棱錐有四個三角形的面,但是只有6條棱.故選D考點:幾何體的形狀9、C【解析】
解:A圖形不是中心對稱圖形;B不是中心對稱圖形;C是中心對稱圖形,也是軸對稱圖形;D是軸對稱圖形;不是中心對稱圖形故選C10、C【解析】
本題考查探究、歸納的數(shù)學(xué)思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側(cè)并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.11、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側(cè)正方體上添加1個,往第3排中間正方體上添加2個、右側(cè)兩個正方體上再添加1個,即一共添加4個小正方體,故選C.12、C【解析】∵DG是AB邊的垂直平分線,∴GA=GB,△AGC的周長=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周長=AC+BC+AB=51cm,故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、11π﹣.【解析】
陰影部分的面積=扇形ECF的面積-△ACD的面積-△OCM的面積-扇形AOM的面積-弓形AN的面積.【詳解】解:連接OM,ON.∴OM=3,OC=6,∴∴∴扇形ECF的面積△ACD的面積扇形AOM的面積弓形AN的面積△OCM的面積∴陰影部分的面積=扇形ECF的面積?△ACD的面積?△OCM的面積?扇形AOM的面積?弓形AN的面積故答案為.【點睛】考查不規(guī)則圖形的面積的計算,掌握扇形的面積公式是解題的關(guān)鍵.14、y3<y1<y1【解析】
根據(jù)反比例函數(shù)的性質(zhì)k<0時,在每個象限,y隨x的增大而增大,進行比較即可.【詳解】解:k=-1<0,∴在每個象限,y隨x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案為:y3<y1<y1【點睛】本題考查的是反比例函數(shù)的性質(zhì),理解性質(zhì):當k>0時,在每個象限,y隨x的增大而減小,k<0時,在每個象限,y隨x的增大而增大是解題的關(guān)鍵.15、【解析】試題分析:首先列表,然后根據(jù)表格求得所有等可能的結(jié)果與兩個骰子的點數(shù)相同的情況,再根據(jù)概率公式求解即可.解:列表得:(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
∴一共有36種等可能的結(jié)果,兩個骰子的點數(shù)相同的有6種情況,∴兩個骰子的點數(shù)相同的概率為:=.故答案為.考點:列表法與樹狀圖法.16、①②③④⑤⑥⑦.【解析】
將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據(jù)全等三角形的性質(zhì)判斷②④;將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質(zhì)、三角形的面積公式計算,判斷⑥,根據(jù)點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當且僅當BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結(jié)論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結(jié)論正確;如圖1,將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結(jié)論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結(jié)論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結(jié)論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),解本題的關(guān)鍵是構(gòu)造全等三角形.17、【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分別是邊AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴,∴,∴CE=,故答案為.18、8【解析】【分析】證明△AEC≌△FBA,根據(jù)全等三角形對應(yīng)邊相等可得EC=AB=4,然后再利用三角形面積公式進行求解即可.【詳解】∵四邊形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S陰影==8,故答案為8.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì),三角形面積等,求出CE=AB是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)線段AB的垂直平分線(或中垂線);(2)AC=53.【解析】
(1)垂直平分線:經(jīng)過某一條線段的中點,并且垂直于這條線段的直線,叫做這條線段的垂直平分線(2)根據(jù)題意垂直平分線定理可得AD=BD,得到CD=2,又因為已知sin∠DAC=17【詳解】(1)小明所求作的直線DE是線段AB的垂直平分線(或中垂線);故答案為線段AB的垂直平分線(或中垂線);(2)過點D作DF⊥AC,垂足為點F,如圖,∵DE是線段AB的垂直平分線,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【點睛】本題考查了垂直平分線的尺規(guī)作圖方法,三角函數(shù)和勾股定理求線段長度,解本題的關(guān)鍵是充分利用中垂線,將已知條件與未知條件結(jié)合起來解題.20、(1)(2)作圖見解析;(3).【解析】
(1)利用平移的性質(zhì)畫圖,即對應(yīng)點都移動相同的距離.(2)利用旋轉(zhuǎn)的性質(zhì)畫圖,對應(yīng)點都旋轉(zhuǎn)相同的角度.(3)利用勾股定理和弧長公式求點B經(jīng)過(1)、(2)變換的路徑總長.【詳解】解:(1)如答圖,連接AA1,然后從C點作AA1的平行線且A1C1=AC,同理找到點B1,分別連接三點,△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點B所走的路徑總長=.考點:1.網(wǎng)格問題;2.作圖(平移和旋轉(zhuǎn)變換);3.勾股定理;4.弧長的計算.21、(1)y=﹣x2+2x+1;(2)當△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【解析】
(1)由點A、C的坐標,利用待定系數(shù)法即可求出拋物線的解析式;(2)設(shè)點M的坐標為(1,m),則CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°兩種情況,利用勾股定理可得出關(guān)于m的方程,解之可得出m的值,進而即可得出點M的坐標.【詳解】(1)將A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,得:,解得:,∴拋物線的解析式為y=﹣x2+2x+1.(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,設(shè)點M的坐標為(1,m),則CM=,AC==,AM=.分兩種情況考慮:①當∠ACM=90°時,有AM2=AC2+CM2,即4+m2=10+1+(m﹣1)2,解得:m=,∴點M的坐標為(1,);②當∠CAM=90°時,有CM2=AM2+AC2,即1+(m﹣1)2=4+m2+10,解得:m=﹣,∴點M的坐標為(1,﹣).綜上所述:當△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【點睛】本題考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象的點的坐標特征以及勾股定理等知識點.22、(1)每行駛1千米純用電的費用為0.26元.(2)至少需用電行駛74千米.【解析】
(1)根據(jù)某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元,可以列出相應(yīng)的分式方程,然后解分式方程即可解答本題;(2)根據(jù)(1)中用電每千米的費用和本問中的信息可以列出相應(yīng)的不等式,解不等式即可解答本題.【詳解】(1)設(shè)每行駛1千米純用電的費用為x元,根據(jù)題意得:=解得:x=0.26經(jīng)檢驗,x=0.26是原分式方程的解,答:每行駛1千米純用電的費用為0.26元;(2)從A地到B地油電混合行駛,用電行駛y千米,得:0.26y+(﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用電行駛74千米.23、證明見解析【解析】試題分析:證明三角形△ABC△DEF,可得=.試題解析:證明:∵=,∴BC=EF,∵⊥,⊥,∴∠B=∠E=90°,AC=DF,∴△ABC△DEF,∴AB=DE.24、(1);(1);(3);【解析】
(1)直接根據(jù)概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結(jié)果數(shù),再找出一個徑賽項目和一個田賽項目的結(jié)果數(shù),然后根據(jù)概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結(jié)果數(shù),然后根據(jù)概率公式計算兩個項目都是徑賽項目的概率P1.【詳解】解:(1)該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率P=;(1)畫樹狀圖為:共有10種等可能的結(jié)果數(shù),其中一個徑賽項目和一個田賽項目的結(jié)果數(shù)為11,所以一個徑賽項目和一個田賽項目的概率P1==;(3)兩個項目都是徑賽項目的結(jié)果數(shù)為6,所以兩個項目都是徑賽項目的概率P1==.故答案為.考點:列表法與樹狀圖法.25、(1)見解析;(2)是7.3米【解析】
(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關(guān)于AD的方程,解方程求解.【詳解】解:(1)如下圖,圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)設(shè)AD=x,在Rt△ABD中,∠ABD=45°,∴BD=AD=x,∴CD=20﹣x.∵tan∠ACD=,即tan30°=,∴x==10(﹣1)≈7.3(米).答:路燈A離地面的高度AD約是7.3米.【點睛】解此題關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,把實際問題抽象到解直角三角形中,利用三角函數(shù)解答即可.26、(2)證明見解析;(2)結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年裝修行業(yè)軟裝商品購銷協(xié)議樣本版
- 2024年電腦維修服務(wù)標準化協(xié)議模板
- 2024年綜合版:多功能智能小區(qū)綜合管理服務(wù)平臺建設(shè)項目合同
- 畢業(yè)設(shè)計(論文)答辯記錄表(完整版)
- 2024年藝人演出推廣協(xié)議
- 2025年度綠色節(jié)能型彩鋼瓦屋頂安裝及維護一體化服務(wù)合同3篇
- 互聯(lián)網(wǎng)金融的技術(shù)創(chuàng)新
- 互聯(lián)網(wǎng)營業(yè)員工作總結(jié)
- 《常見的功能關(guān)系》課件
- 醫(yī)院感染護理工作總結(jié)
- 心理健康對學(xué)生學(xué)習(xí)成績的影響
- 食品生產(chǎn)企業(yè)員工食品安全培訓(xùn)
- 小學(xué)數(shù)學(xué)綜合素質(zhì)評價專項方案
- 模型預(yù)測控制現(xiàn)狀與挑戰(zhàn)
- MOOC創(chuàng)新創(chuàng)業(yè)與管理基礎(chǔ)(東南大學(xué))
- 中職課程思政說課比賽 課件
- 臺大歐麗娟《紅樓夢》公開課全部筆記
- 公司報價管理辦法
- 農(nóng)貿(mào)市場安全生產(chǎn)風(fēng)險分級管控和隱患排查治理雙體系方案全套資料2019-2020完整實施方案模板
- 人教版 五年級上冊道德與法治全冊各課及單元同步檢測試卷【含答案】
- T梁濕接縫及橫隔梁施工方案
評論
0/150
提交評論