湖南省衡陽市祁東縣2022年高三一診考試數(shù)學試卷含解析_第1頁
湖南省衡陽市祁東縣2022年高三一診考試數(shù)學試卷含解析_第2頁
湖南省衡陽市祁東縣2022年高三一診考試數(shù)學試卷含解析_第3頁
湖南省衡陽市祁東縣2022年高三一診考試數(shù)學試卷含解析_第4頁
湖南省衡陽市祁東縣2022年高三一診考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡

2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1函數(shù),則“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件2如果實數(shù)滿足條件,那么的最大值為( )ABCD3已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()ABC-D-4下列命題是真命題的是( )A若平面,滿足,則;B命題:,則:,;C“命題為真”是“命題為真”的充分不必要條件;D命題“若,則”的逆否命題為:“若,則”.5由實數(shù)組成的等比數(shù)列an的前n項和為Sn,則“a10”是“S9S8”的( )A充分不必

3、要條件B必要不充分條件C充要條件D既不充分也不必要條件6某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為( )ABCD7已知邊長為4的菱形,為的中點,為平面內(nèi)一點,若,則( )A16B14C12D88在三棱錐中,點到底面的距離為2,則三棱錐外接球的表面積為( )ABCD9已知向量與向量平行,且,則( )ABCD10已知命題:“關(guān)于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是( )ABCD11已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是( )ABCD12三國時代吳國數(shù)學家趙爽所

4、注周髀算經(jīng)中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13設(shè)、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則_14已知等比數(shù)列滿足公比,為其前項和,構(gòu)成等差數(shù)列,則_15在平面直角坐標系中,雙曲線的一條準線與兩條漸近線所圍成的三角形的面積為_.16已知為橢圓內(nèi)一定

5、點,經(jīng)過引一條弦,使此弦被點平分,則此弦所在的直線方程為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知在平面直角坐標系中,橢圓的焦點為為橢圓上任意一點,且.(1)求橢圓的標準方程;(2)若直線交橢圓于兩點,且滿足(分別為直線的斜率),求的面積為時直線的方程.18(12分)已知函數(shù)(,)滿足下列3個條件中的2個條件:函數(shù)的周期為;是函數(shù)的對稱軸;且在區(qū)間上單調(diào).()請指出這二個條件,并求出函數(shù)的解析式;()若,求函數(shù)的值域.19(12分)選修4-5:不等式選講已知函數(shù)()解不等式;()對及,不等式恒成立,求實數(shù)的取值范圍.20(12分)已知如圖1,在RtABC

6、中,ACB=30,ABC=90,D為AC中點,AEBD于E,延長AE交BC于F,將ABD沿BD折起,使平面ABD平面BCD,如圖2所示。()求證:AE平面BCD; ()求二面角A-DC-B的余弦值; ()求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過程)21(12分)為了響應(yīng)國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.()由以上數(shù)據(jù)繪制成22聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結(jié)果”有關(guān)?男女總計合格不合格總計()從上述樣本

7、中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學期望.附:0.1000.0500.0100.0012.7063.8416.63510.828 22(10分)已知橢圓的左,右焦點分別為,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,四邊形ABCD內(nèi)接于橢圓E,記直線AD,BC的斜率分別為,求證:為定值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可【詳解】設(shè),若函數(shù)是上的奇函數(shù)

8、,則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“的圖象關(guān)于軸對稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.2B【解析】解:當直線過點時,最大,故選B3A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.4D【解析】根據(jù)面面關(guān)系判斷A;

9、根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,滿足,則可能相交,故A錯誤;命題“:,”的否定為:,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.5C【解析】根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若an是等比數(shù)列,則,若,則,即成立,若成立,則,即,故“”是“”的充要條件,故選:C.【

10、點睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項公式是解決本題的關(guān)鍵.6C【解析】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.7B【解析】取中點,可確定;根據(jù)平面向量線性運算和數(shù)量積的運算法則可求得,利用可求得結(jié)果.【詳解】取中點,連接,即.,則.故選:.【點睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運算,關(guān)鍵是能夠?qū)⑺?/p>

11、向量進行拆解,進而利用平面向量數(shù)量積的運算性質(zhì)進行求解.8C【解析】首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進而求出球的表面積【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,為的中點由球的性質(zhì)可知:平面,且設(shè),在中,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.9B【解析】設(shè),根據(jù)題意得出關(guān)于、的方程組,解出這兩個未知

12、數(shù)的值,即可得出向量的坐標.【詳解】設(shè),且,由得,即,由,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數(shù)量積的坐標運算,考查計算能力,屬于中等題.10B【解析】命題p:,為,又為真命題的充分不必要條件為,故11A【解析】由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,所以,從而雙曲線方程為,不妨設(shè)點在雙曲線右支上運動,則,當時,此時,所以,所以;當軸時,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題

13、.12A【解析】分析:設(shè)三角形的直角邊分別為1,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量(1)一般地,一個連續(xù)變量可建立與長度有關(guān)的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序?qū)崝?shù)對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關(guān)的幾何概型;

14、(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標系即可建立與體積有關(guān)的幾何概型二、填空題:本題共4小題,每小題5分,共20分。13【解析】由橢圓的標準方程,求出焦點的坐標,寫出直線方程,與橢圓方程聯(lián)立,求出弦長,利用定義可得,進而求出?!驹斀狻坑芍?,焦點,所以直線:,代入得,即,設(shè), ,故 由定義有,所以?!军c睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質(zhì)、以及直線與橢圓位置關(guān)系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運算。140【解析】利用等差中項以及等比數(shù)列的前項和公式即可求解.【詳解】由,是等差數(shù)列可知因

15、為,所以,故答案為:0【點睛】本題考查了等差中項的應(yīng)用、等比數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.15【解析】求出雙曲線的漸近線方程,求出準線方程,求出三角形的頂點的坐標,然后求解面積【詳解】解:雙曲線:雙曲線中,則雙曲線的一條準線方程為,雙曲線的漸近線方程為:,可得準線方程與雙曲線的兩條漸近線所圍成的三角形的頂點的坐標,則三角形的面積為故答案為:【點睛】本題考查雙曲線方程的應(yīng)用,雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力,屬于中檔題16【解析】設(shè)弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【詳解】設(shè)弦所在的直線與橢圓相交于、兩點,由于

16、點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點睛】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設(shè)而不求法來解答,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)或【解析】(1)根據(jù)橢圓定義求得,得橢圓方程;(2)設(shè),由得,應(yīng)用韋達定理得,代入已知條件可得,再由橢圓中弦長公式求得弦長,原點到直線的距離,得三角形面積,從而可求得,得直線方程【詳解】解:(1)據(jù)題意設(shè)橢圓的方程為則橢圓的標準方程為.(2)據(jù)得設(shè),則又原點到直線的距離解得或所求直線的方程

17、為或【點睛】本題考查求橢圓標準方程,考查直線與橢圓相交問題解題時采取設(shè)而不求思想,即設(shè)交點坐標為,直線方程與橢圓方程聯(lián)立消元后應(yīng)用韋達定理得,把這個結(jié)論代入題中條件求得參數(shù),用它求弦長等等,從而解決問題18()只有成立,;().【解析】()依次討論成立,成立,成立,計算得到只有成立,得到答案.()得到,得到函數(shù)值域.【詳解】()由可得,;由得:,;由得,;若成立,則,若成立,則,不合題意,若成立,則,與中的矛盾,所以不成立,所以只有成立,.()由題意得,所以函數(shù)的值域為.【點睛】本題考查了三角函數(shù)的周期,對稱軸,單調(diào)性,值域,表達式,意在考查學生對于三角函數(shù)知識的綜合應(yīng)用.19().().【解

18、析】詳解:()當時,由,解得;當時,不成立;當時,由,解得.所以不等式的解集為.()因為,所以.由題意知對,即,因為,所以,解得.【點睛】 絕對值不等式解法的基本思路是:去掉絕對值號,把它轉(zhuǎn)化為一般的不等式求解,轉(zhuǎn)化的方法一般有:絕對值定義法;平方法;零點區(qū)域法 不等式的恒成立可用分離變量法若所給的不等式能通過恒等變形使參數(shù)與主元分離于不等式兩端,從而問題轉(zhuǎn)化為求主元函數(shù)的最值,進而求出參數(shù)范圍這種方法本質(zhì)也是求最值一般有: 為參數(shù))恒成立 為參數(shù))恒成立 20()證明見解析;();()1:5【解析】()由平面ABD平面BCD,交線為BD,AEBD于E,能證明AE平面BCD;()以E為坐標原點

19、,分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標系E-xyz,利用向量法求出二面角A-DC-B的余弦值;()利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的體積,再作比寫出答案即可【詳解】()證明:平面ABD平面BCD,交線為BD,又在ABD中,AEBD于E,AE平面ABD,AE平面BCD()由(1)知AE平面BCD,AEEF,由題意知EFBD,又AEBD,如圖,以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標系E-xyz,設(shè)AB=BD=DC=AD=2,則BE=ED=1,AE=,BC=2,BF=,則E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),F(xiàn)(,0,0),C(,2,0),由AE平面BCD知平面BCD的一個法向量為,設(shè)平面ADC的一個法向量,則,取x=1,得,二面角A-DC-B的平面角為銳角,故余弦值為()三棱錐B-AEF與四棱錐A-FEDC的體積的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論