2021高中數(shù)學(xué)一輪復(fù)習(xí)課時(shí)過關(guān)檢測(四)基本不等式_第1頁
2021高中數(shù)學(xué)一輪復(fù)習(xí)課時(shí)過關(guān)檢測(四)基本不等式_第2頁
2021高中數(shù)學(xué)一輪復(fù)習(xí)課時(shí)過關(guān)檢測(四)基本不等式_第3頁
2021高中數(shù)學(xué)一輪復(fù)習(xí)課時(shí)過關(guān)檢測(四)基本不等式_第4頁
2021高中數(shù)學(xué)一輪復(fù)習(xí)課時(shí)過關(guān)檢測(四)基本不等式_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、機(jī)密第 12 頁2020-4-16課時(shí)過關(guān)檢測(四) 基本不等式A 級(jí) 夯基保分練a2 b21“a>b>0”是“ ab<a 2b”的 ()A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件a2b2解析: 選 A 由 a>b>0,可知 a2b2>2ab,充分性成立,由 ab< 2 ,可知 ab, a,b,R,故必要性不成立2(2019 泉·州檢測 )已知 0<x<1,則 x(33x)取得最大值時(shí) x的值為 ()1A.3B.12C.34D.23x 1 x3解析: 選 B 因?yàn)?0<x<1,所以 x(33x)3

2、x(1x)3 x 1x 2 3.當(dāng)且僅當(dāng) x1241 x,即 x 2時(shí)等號(hào)成立123若實(shí)數(shù) a,b 滿足 ab,則 ab 的最小值為 ( )abA. 2B2C 2 2D412解析: 選 C 因?yàn)?ab,所以 a>0, b>0,ab由 aba1 b22a1·b22 a2b,所以 ab2 2(當(dāng)且僅當(dāng) b2a時(shí)取等號(hào) ),所以 ab 的最小值為 2 2.4已知函數(shù) f(x)xxa2的值域?yàn)?(, 04,),則 a的值是()x1A.23B.32C1D2解析: 選 C 由題意可得 a>0,當(dāng) x>0 時(shí), f(x)xxa 2 2 a 2,當(dāng)且僅當(dāng) x a時(shí)取等號(hào);a當(dāng)

3、 x<0 時(shí), f(x)xx 22 a2,x當(dāng)且僅當(dāng) x a時(shí)取等號(hào),22 a 0,所以解得 a 1,故選 C.2 a 2 4,5(多選)下列四個(gè)函數(shù)中,最小值為2的是 ()1A y sin x0<xsin x 21 B y ln x ln x(x>0,x 1)x26Cy x25D y4x4x1解析: 選 AD 對于 A,因?yàn)?0<x ,所以 0<sin x1,y sin x2,當(dāng)且僅當(dāng)2 sin xsin xsi1n x,即 sin x1時(shí)取等號(hào),符合題意;對于 B,當(dāng) 0<x<1時(shí), ln x<0,此時(shí) yln x1x2 61 ln x為負(fù)值

4、,最小值不是 2,不符合題意;對于 C,y x25,設(shè) tx 5x 5 x2 5,則 t 5,則 y 5 15 6 5 5,其最小值不是 2,不符合題意;對于 D,y 4x4x4x41x24x×41x2,當(dāng)且僅當(dāng) x0時(shí)取等號(hào),其最小值為 2,符合題意 故選 A 、D.6(多選)下列四個(gè)命題中,是真命題的是()A1? xR,且 x0,xx1 2B? x0R,使得 x201 2x0CD當(dāng)x2 y2 2xyx> 0,y>0,則x 2 x2xyyx(1,2)時(shí),不等式 x2mx4< 0 恒成立,則實(shí)數(shù)m 的取值范圍是 ( , 5解析:1選 BCD 對于 A,? xR,且

5、x0,x 2 對 x< 0時(shí)不成立;對于 B,當(dāng) xx1 時(shí), x212,2x2,x212x 成立,正確;對于 C,若 x>0,y>0,則(x2y2)(xy)22xy·4xy8x2y2, 化為x22y2 2xy ,當(dāng)且僅當(dāng)2x yxy>0 時(shí)取等號(hào),正確;對于D,44當(dāng) x (1,2)時(shí),不等式 x2mx4<0 恒成立,則 m< xx ,令 f(x) x x ,x (1,2) 則4 4 x2f(x)1x2 x2 > 0,所以函數(shù) f(x)在 x (1,2)上單調(diào)遞增所以 f(x)> f(1) 5.所以 m 5,因此實(shí)數(shù) m的取值范圍是

6、(, 5,正確x2 2x 117已知 f(x) x 2xx1,則 f(x)在 又 M 恒成立, xy所以 M 1,即 M 的最大值為 1.答案: 1 9某公司購買一批機(jī)器投入生產(chǎn),據(jù)市場分析,每臺(tái)機(jī)器生產(chǎn)的產(chǎn)品可獲得的總利潤 y(單位:萬元 )與機(jī)器運(yùn)轉(zhuǎn)時(shí)間 x(單位:年 )的關(guān)系為 yx218x25(xN *),則每臺(tái)機(jī)器 為該公司創(chuàng)造的年平均利潤的最大值是 萬元2,3 上的最小值為x2解析:x2 2x 11 1f(x)xxx22 20,當(dāng)且僅當(dāng) xx,即 x1 時(shí)取等號(hào)又 1 12, 3 ,1所以 f(x)在 12, 3 上的最小值是 0.答案:018若正實(shí)數(shù) x, y 滿足 x y 2,

7、且 xy M 恒成立,則 M 的最大值為 解析: 因?yàn)檎龑?shí)數(shù) x, y 滿足 x y 2,所以 xyx y 22241,解析:每臺(tái)機(jī)器運(yùn)轉(zhuǎn) x 年的年平均利潤為y 18xx2x5x,而 x>0,故yx182 25 8,1所以x1y1當(dāng)且僅當(dāng) x5時(shí)等號(hào)成立,此時(shí)每臺(tái)機(jī)器為該公司創(chuàng)造的年平均利潤最大,最大值為8 萬元答案: 810 (一題兩空 )(2019 湖·南岳陽期末改編 )若 a>0, b>0,且 a2b 40,則 ab 的最大值為12,a12b的最小值為11 解析: a>0 ,b>0,且 a 2b4 0,a2b4,ab2a·2b2

8、5;a 2b 222,當(dāng)且12僅當(dāng) a 2b,即 a2, b1 時(shí)等號(hào)成立, ab 的最大值為 2.a b121a2ba 2b 14 4答案: 2 9411(1)當(dāng)2b 2a 15 a b 4·522a 9 1 2 92ba 94,當(dāng)且僅當(dāng) a b 時(shí)等號(hào)成立, 1a 2b的最小值為 94.x<23時(shí),求函數(shù) yx2x83的最大值;32x32(2)設(shè) 0< x<2,求函數(shù) y x 4 2x 的最大值32.解: (1)y21(2x 3) 83 2x8 32x當(dāng) x<32時(shí),32x>0,84,32x 2 3 2x32x當(dāng)且僅當(dāng)8,23 2x,1即 x 21時(shí)

9、取等號(hào)3 5 5 是 y 432 52,故函數(shù)的最大值為 25.(2)0<x<2,2x>0,y42xx 2 x2 x 2· 2 2,當(dāng)且僅當(dāng) x2x,即 x1 時(shí)取等號(hào), 當(dāng)x1時(shí),函數(shù) y x 42x 的最大值為 2.12已知 x>0,y>0,且 2x 8yxy 0,求:(1)xy 的最小值;(2)x y 的最小值82解: (1)由 2x 8y xy 0,得 x82y 1.又 x>0, y>0 ,則 18x y228x·y2 8xy,得 xy64,82當(dāng)且僅當(dāng) 82,即 x16且 y4時(shí)等號(hào)成立 xy所以 xy 的最小值為 64.

10、82(2)由 2x8yxy0,得 xy1,82則 xy x y (xy)102x8y 1022x·8y18.y x y x當(dāng)且僅當(dāng) 2yx8xy,即 x12且 y6時(shí)等號(hào)成立,所以 xy 的最小值為 18.B級(jí)提能綜合練13若正數(shù)a, b 滿足ab2,14則a1 1b* 4 1的最小值是 (A19B.4C9D16解析: 選1a1 b 1a1 b 1a1b1a 1 b144b11414b 1 4 a 152a1 b 19,4,當(dāng)且僅當(dāng)b 1 4 a 1 ,即a 1 b 11a 3,5b35時(shí)取等號(hào),故選 B.a 的最小值為14設(shè) a>0,若關(guān)于 x 的不等式 x a 5 在 (1

11、, )上恒成立,則 x112 a 1(當(dāng)解析:在(1, )上,x a (x1) a 12 x 1x1且僅當(dāng) x1 a時(shí)取等號(hào) ) 由題意知 2 a 15.所以 a4.答案: 415某廠家擬定在 2020 年舉行促銷活動(dòng),經(jīng)調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)k量 )x 萬件與年促銷費(fèi)用 m(m 0)萬元滿足 x3(k 為常數(shù) )如果不搞促銷活動(dòng),那么m1該產(chǎn)品的年銷量只能是 1 萬件已知 2020 年生產(chǎn)該產(chǎn)品的固定投入為 8 萬元,每生產(chǎn) 1 萬 件該產(chǎn)品需要再投入 16 萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均成本的 1.5 倍 ( 產(chǎn)品成本包括固定投入和再投入兩部分資金)(1)將

12、 2020 年該產(chǎn)品的利潤 y 萬元表示為年促銷費(fèi)用 m 萬元的函數(shù);(2)該廠家 2020 年的促銷費(fèi)用投入多少萬元時(shí),廠家利潤最大?解: (1)由題意知,當(dāng) m0時(shí), x 1(萬件),2所以 13 k? k 2,所以 x3(m0),m 1816x每件產(chǎn)品的銷售價(jià)格為 1.5× x (元 ),8 16x 2所以 2020 年的利潤 y1.5x× 816xm 48xm4 8 3 mxm 116 m1 m1 29(m0)16(2)因?yàn)?m 0 時(shí), (m1) 2 16 8,m1所以 y829 21,16當(dāng)且僅當(dāng)m1? m 3(萬元 )時(shí),m1ymax 21(萬元 ) 故該廠家 2020 年的促銷費(fèi)用投入 3 萬元時(shí),廠家的利潤最大為 21 萬元C 級(jí) 拔高創(chuàng)新練16(2019廣·東惠州三調(diào) )在 ABC中,點(diǎn) D是 AC上一點(diǎn),且 AC 4 AD , P為 BD上一點(diǎn),向量 AP AB AC(>0,>0),41

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論