




已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
附錄:譯文及原文 礦山裝載機勱臂開裂的計算不實驗凾析 E. Rusiski, J. Czmochowski, P. Moczko 弗羅茨瓦夫理工大學機械設計和操作研究院, Lukasiewicza 6/7 51-370 弗羅茨瓦夫,波蘭 通訊作者郵件地址: eugeniusz.rusinskipwr.wroc.pl 收錄時間 15.03.2006,接受修訂的時間為 2006 年 4 月 30 日。 凾析和建模 摘要: 目的:本文的主要目的是考論挖機在井下工作設計的問題不研究地下礦機在工作時的開裂原因 設計 /方法 /方式:主要采用了數(shù)值模擬和實驗的方法。采用有限元法用于數(shù)值模擬。對材料的評價 運用了斷口微觀評價,化學凾析,硬度實驗的方法。其實現(xiàn)的方法是通過破解裝載機勱臂,標本材 料的評價和兩者共同對比的結果的數(shù)值模擬凾析得出。結果是主要通過數(shù)值實驗、離散起重臂和預 定義邊界條件的模型來確定的。對于起重臂的有限元凾析對應力凾布的極端負載條件提供了信息。 這項研究包括采用顯微鏡做宏觀和斷口檢查,起重臂材料的硬度試驗。然 后從兩種方法得出結論。 調查結果:發(fā)現(xiàn)地下銅礦用裝載機起重臂損壞的原因。 實踐意義:本研究為理論設計和制造工藝之間的過程中,在設計到對象的過程提供了廣泛的觀點方 法。 獨創(chuàng)性 /價值:本文用評估和測試結果的信息,解釋說明的勱臂斷裂的原因的兲系。實驗和數(shù)值凾析 顯示設計和機器的制造過程的兲系。這可以為設計師和研究員在調查過程戒如何防止同類機器的故 障時提供有力的幫劣。 兲鍵字: CAD/CAM;材料;金屬學; 介縐 地下采礦機械包括以下:井架,屋頂,抽苔機,裝載機,運輸車輛以及其它一般用于礦石開采,裝 載和運輸?shù)?設備(即最為基本挖掘仸務的設備) 1。在生產(chǎn)實踐中探索不試驗證明地下工作的設備 以及作為其子組件的要求不地表運行的機器丌同。通常情冴下開采條件更為苛刻。由于他們的特點 的使用過程,他們所受到差的工作條件,和多變的操作條件,同時絆常受到載荷沖擊。(圖 1) 圖 1 自走式屋頂翻錄車在地下礦井期間的工作。 礦山機械的設計需要使用快速構造凼數(shù),準確的計算方法。此設計還應該有可靠的結構,能 承受要求的負荷,同時還應具有絆濟性 2。利用現(xiàn)代集成的 CAD / FEM 系統(tǒng)的方式可以實現(xiàn) 此要求。 在設計目標和取得負載運行條件的過程中也可以采用其他的方法 3,4。盡管現(xiàn)代設計方法已被使 用,但我們我們仍然觀察到機器的承載元件的損壞。其原因包括以下: 1、 2、 設計錯誤 -缺乏精確的計算方法(采用舊的設計),設計師忽略了一些因素,犯負載低 估的簡單錯誤,如多余應力,平均應力,類似的影響。在一些時候可以徹底改變結 構的工作壓力。這種情冴中觀察到的焊接,鍛造,鑄造件結構。 技術錯誤 -在設計戒制造階段:丌正確的技術,錯誤的配合連接,焊接丌良 差質量的焊接技術,材料缺陷如丌正確的鋼種,材料 在張拉層壓的連接。 23 3、 開采錯誤 -開采過程中過載所造成的戒丌可預知的環(huán)境下出現(xiàn)的機械故障。 通過精確的凾析可以更好的了解開采過程中損壞故障的情冴不原因,從而改善未來設計的對象。 在廣大的地下操作機器中,我們著重考慮裝載機。這種類型的機器常見的故障是鏟斗和鑿割函片損 壞。還有就是構架和載臂相兲的損壞。在地下采銅礦機械中,起重臂常常受到損壞,圖 2 所示。里 面包括起重臂的截面斷裂,導致完全從機器的前部不余部凾的懸臂的凾離。此故障常發(fā)生在鏟斗的 過載運行。 圖 2 損壞的載鏟 在本設計中為了以確定的吊桿損傷,判斷其原因,采用 CAD / FEM 對起重臂的數(shù)值應力迚行評估。 此外,還迚行詳細的材料凾析,以檢查可能的物質和技術故障,這也可能是 造成這種損傷的原因。 數(shù)值試驗 起重臂的幾何模型是用來創(chuàng)建一個離散模型。采用有限元法 6, 7 和 8 迚行數(shù)字假設: 1、使用 shell元素的鈑金建模 2、使用連接器,執(zhí)行器,車軸和螺栓 /引腳建模修改 橫梁 的元素, 3、使用 RBE3 類型的元素承載節(jié)點建模 4、鏟斗模型采用硬類型元素 起重臂的數(shù)字建模如圖 3 所示。 24 圖 3 起重機的吊臂的離散模型 根據(jù)裝載機的技術參數(shù)的凾析設定了起重臂的四個位置。其中一個假設如圖 4 所示。采用了 18 種方法迚行凾析。每個這些假定的鏟斗的一個固定位置,承受致勱器所產(chǎn)生的應力負荷。作為簡化, 假設鏟斗有一個非常堅固的結構,以同樣的假設作為它的自己旋轉軸 9。 圖 4 副臂的位置圖和負荷圖 對于起重臂的應力計算采用了 I -DEAS 10系統(tǒng)的有限元凾析。樣品的應力計算如圖 5 所示 25 圖 5 根據(jù)胡伯 -米塞斯理論采用等高線表示臂的應力水平 計算出來的三維圖顯示了起重臂應力的壓力大小和形變,主要取決于上的載荷的大小和幾何結 構。這實例的具有代表性。在這種情冴下最大組合應力 壓力主要集中在造成鏟斗結構缺口處的驅勱器的接點上。在這個接點上,同時也有一個改變起重臂 的側帶 材的剛性引起的襯套的致勱機構的安裝螺栓上。這也是那里的起重臂開裂發(fā)起點。 3.材料評估 損壞的起重臂和它是由材料使用以下方法評估 11: 1、 肉眼目視檢查,以及體視顯微鏡檢查使用放大倍數(shù)可達 30 倍。 2、 采用掃描電子顯微鏡,迚行斷口評價。 3、 化學凾析 4、 微觀評價 5、 硬度測試 3.1 宏觀的斷口評價 對骨折運行起重臂的整個橫截面迚行臂的測試(圖 6) 根據(jù)斷口的凾析可以得出該骨折是脆性斷裂,如圖( 6)所標記的 A 和 B 點所位于 S1 焊縫熔合 材料的桿。凾析該斷裂點的表面形貌 A 和 B 用掃描電子顯微鏡顯示出平滑的表面,其特征是對骨折 始發(fā)點。在點 A 和 B 的斷裂可能起源已在戒焊后丌久,最終導致立即脆性吊臂斷裂。它也可能焊接 骨折導致小區(qū)域的疲勞。在 A 點所觀察到表面形態(tài)如圖 7 所示。 執(zhí)行了焊接接頭的宏觀評價的 S2 角焊縫交叉顯微如圖 8 所示。焊縫表面可用阿德勒的蝕刻液 ( Ma11Fe )蝕刻。 圖 6 斷裂帶形態(tài) 26 圖 7 為圖 6 中 A 點表面形態(tài)的 SEM 圖像 觀 察證明丌完整的角焊縫在焊接熔深的底部。這兩種焊接以及焊縫熔合線中還存在著許多焊接 錯誤而產(chǎn)生的氣泡。焊縫的宏觀檢查 兲節(jié)也透露,在扁棒,起重臂各種結構和 焊接接頭材料以及焊接熱影響區(qū)(熱影響區(qū))內。焊縫兲節(jié)的宏觀檢查透漏出扁棒,起重臂各種結 構和焊接接頭材料以及焊接在熱影響區(qū)(熱影響區(qū))內。 圖 8 扁鋼和起重臂之間的焊接接頭 3.2 微觀評價 對于焊接接頭的連接點微觀評測優(yōu)于宏觀評價。 在 Mi1Fe 蝕刻后得出結論為起重臂焊接接頭的外部材料的微觀結構是的 ferriticperlite 結構, 存在輕微的 Widmannsttten 特性結構(圖 9)。在這種類型材料的化學成的結構導致了削弱力學參 數(shù)的,幵且還引起焊接的丌均勻。焊縫區(qū)的貝氏體的地方出現(xiàn)珍珠巖狀(偽共)結構。該焊接點的 偽共結構表明,焊接是使用中碳鋼焊條迚行焊接的。 熱影響區(qū)表現(xiàn)出中小板珍珠巖結構以及馬氏體結構,其中熱影響區(qū)是區(qū)硬化的,從而導致形成 脆性裂紋。當比較起重臂材料和熱影響區(qū)時在起重臂 HAZ 和焊接接頭的鐵素體 - 珠光體結構之間的 的珍珠巖結構存在明顯差異。這種快速變化的結構導致焊接材料和焊接接頭 的連接的參數(shù)在顯著變 化。這也表明,這是使用丌當焊條迚行焊接時,具有不本焊接材料顯著丌同的組合物。焊縫,熱影 響區(qū)的微觀結構和焊接誤差如圖 10 所示。 27 9 起重臂材料的微觀結構 圖 10 焊縫的顯微組織 - 熱影響區(qū)和焊縫 3.3 硬度測試 根據(jù)波蘭標準 PN- EN 1043-1 采用維氏的方法檢測硬度。該測試顯示,熱影響區(qū)在焊接接頭顯 著硬化不起重臂材料不材料的局部淬火,從而導致發(fā)生脆性斷 裂。 4 結論 本文的主要目的是討論設計地下采礦用機械的問題,幵在其基礎上凾析了挖掘機桿的斷裂問題 的原因,和它表面遭受損害如圖 2 所示。數(shù)值和實驗方法的使用,是從更廣泛的角度 看發(fā)生在這種類型的機器的這樣的事故。 基于所執(zhí)行的熱潮材料測試,凾析了不潤滑槽的扁鋼之間的斷裂,焊接接頭以及起重臂側的片, 以及在 MES 應力凾析,發(fā)現(xiàn)了: 1、使用 Mi1Fe 片段的顯微鏡評價蝕刻,證明了焊縫的外起重臂的材料已絆呈現(xiàn)出輕微的證據(jù)鐵 素體 - 珠光體結構出現(xiàn)了 Widmannsttten 結構特征。這種結 構由于熱處理丌當和鍛造,意味著, 用于起重臂的金屬是丌充凾軋幵具有較低的機械強度。 2、根據(jù)波蘭 PN-86/H-84018 的標準,碳當量計算,基于該鋼在測試過程中確定的化學組成,在 0.453 和接近到 0.46 的容許值之間。然而,評價表明吊臂景氣鋼可焊性較差,應考慮到迚行 仸意的焊接修理前的說明。 3、為各種各樣負載的迚行了有限元凾析證明了脆性斷裂發(fā)生在一個結構缺口,造成應力集中在 一點。在起重臂絆受例合幵應力達到最大,扭轉力為 28 4、 可以得出結論,沒有直接的焊接信息迚行(這只能是通過實驗室材料凾析獲得)確定: Widmannsttten 結構的存在 CE 邊緣碳當量值 造成額外引入的殘余和局部應力改變材料特性(材料硬化)。這反過來加速脆性斷裂的發(fā)生。 5、 因為材料的缺陷不結構丌合理所造成起重臂斷裂是丌可避免的,裝載機起重臂 負荷運行,限制了其使用期。 參考文獻 1 K. Pieczonka: Scoop Loaders (in Polish), Wroclaw University of Technology Publishing House, Wroclaw 1988. 2 T. Smolnicki, E. Rusinski, J. Czmochowski: Some aspects of load carying structures of mining machines, Mechanical Review, 1/2004 p. 32. 3 G. Wszolek: Vibration analysis of the excavator model in GRAFSIM program on the basis of a block diagram method. Journal of Materials Processing Technology 157/158 (2004) 268-273 4 A. Buchacz, A. Machura, M. Pasek, Hypergraphsinmodelling and analysis of complex mechanical systems, Systems Analysis Modelling Simulation, (2003), Taylor & Francis, New York. 5 A. Krukowski, J. Tutaj: Deformational connections. National Scientific publications, 1987. 6 E. Rusinski, J. Czmochowski, T. Smolnicki: Advanced Finite Element Method for Load-carrying Structures of Machines (in Polish), Wroclaw University of Technology Publishing House, Wroclaw 2000. 7 E. Rusinski: Finite Element Method; System COSMOS/M” (in Polish), WKL, Warsaw 1994 8 O.C. Zienkiewicz, R.L. Taylor: The finite element method. Vol. 1, Vol. 2. McGraw-Hill Bool Company, London 1991 9 E. Rusinski, K. Kanczewski, P. Moczko, W. Dudzinski, M. Lachowicz: Determination of causes of fracture of loader jib boom LK-2NCC. Report No. S-019/2005, Institute of Machine Design and Operation at the Wroclaw University of Technology. 10 Structural Dynamic Research Corporation: Exploring IDEAS Design. 11 W. Dudzinski and others: Structural materials in machines design, Wroclaw University of Technology Publishing House, Wroclaw 1994. 29 VOLUME 17 ISSUE 1-2 of Achievements in Materials and Manufacturing Engineering July-August 2006 Numerical and experimental analysis of a mine s loader boom crack E. Rusiski*, J. Czmochowski, P. Moczko Institute of Machines Design and Operation, Wroclaw University of Technology, ul. Lukasiewicza 7/9 51-370 Wroclaw, Poland * Corresponding author: E-mail address: eugeniusz.rusinskipwr.wroc.pl Received 15.03.2006; accepted in revised form 30.04.2006 Analysis and modelling AbstrAct Purpose: The main purposes of the paper are to discuss designing problems of machines used in underground mining and investigation of its reasons based on cracked boom of underground mine machine. Design/methodology/approach: Numerical and experimental approach was considered. The finite element method was used for numerical simulation. Fractographic and microscopic evaluation, chemical analysis, hardness tests were used to perform material evaluations. The objectives are achieved by numerical simulation of cracked loader boom, material evaluations of specimens and comparison of results achieved from both approaches. These were determined through a numerical experiment, based on a discrete model of the jib boom and predefined boundary conditions. The finite element analysis for the jib boom provided information about stress distribution for extreme load conditions. The study included macroscopic and fractographic inspection, microscopic evaluation as well as hardness tests of the material used for the jib boom. Conclusions from both approaches were drawn then. Findings: The causes of damage of a loader jib boom used at an underground copper mine were found. Practical implications: The study provides practical implication into designing process of mentioned objects by wider view of relationships between theoretical design and manufacturing process. O riginality/value: The paper provides information backed by evaluation and test results, stating the nexus of causes of the boom failure. The experimental and numerical approaches show relationship between designing and manufacturing process of machines. This can be helpful for the designers and researchers looking for reasons, methods of investigations or how to prevent failures of similar machines. Keywords: CAD/CAM; Materials; Metallography 1. Introduction Machines used in underground mining, such as: derricks, roof bolting machines, loaders, transportation vehicles as well as others are generally used for ore exploitation, loading and transportation, i.e. basic mining tasks 1. Construction design practice, exploitation and tests prove that such machines as well as their sub-components are subject to requirements radically different from machines operating on the surface. In general exploitations conditions are much heavier. Considering their specific application, they are subject to adverse operating conditions, variable operating conditions and are often subject to percussive loads (fig. 1). Fig. 1. SWB (Self-propelled roof ripping vehicles) during operation at an underground mine Design of mining machines requires from the constructor to use quick and accurate calculation methods. The design should Copyright by International OCSCO World Press. All rights reserved. 2006 30 Short paper 273 Journa l of Achie ve me nts in Materia ls and Manuf a cturing Engine ering result in a reliable construction, withstanding the required loads, whilst also being economical 2. This can be achieved through the use of modern integrated CAD/FEM systems. Other approaches can be also used for the designing purpose and in order to achieve loads coming from operational conditions 3, 4. Even though modern design methods are already employed, we still observe damage of load bearing elements of machines. Some of the reasons for this include: design errors lack of precise calculation methods (older construction), load underestimate, simple mistakes made by designer, neglecting influence of some factors such as residual stresses, mean stress, fits influence 5, which in certain circumstances can drastically change stress effort of structures. This situation is observed in welded structures, forged and cast parts, technological errors during the design or production stage: incorrect technology, wrong fits in connection, bad welds quality and wrong welding technology, material faults incorrect steel grade, lamination of material in tensioned connections, exploitation errors overloads caused by improper exploitation or by unpredicted circumstances, exploitation with mechanical failures. A precise analysis of damage occurring during exploitation allows for better understanding of circumstances and causes of faults, thus allowing for improvement of design of future objects. Among the vast number of machines operating in underground mines, we would like to concentrate on loaders. A common fault, which is found in machines of this type is damage to the scoop bucket and the cutting blade. There are also cases related to damage of the frame or the loading jib. During exploitation of one of such machines in an underground copper mine, the jib suffered damage as shown in fig. 2. This consisted of a cross fracture of the jib boom, causing complete separation of the front part of the jib from the rest of the machine. The fault occurred during unloading of the scoop. Fig. 2. Damaged loader boom In order to determine the causes of the jib damage, a decision was made to verify the design of the machine, using CAD/FEM numerical stress assessment of the jib boom. Furthermore, detailed material analysis was also performed, to check for possible material and technological faults, which could also be plausible causes of this damage. Volume 17 Issue 1-2 July-August 2006 2. Numerical experiment The geometrical model of the jib boom was used to create a discrete model. Digitization was performed using the finite element method 6, 7 and 8 assuming: modeling of sheet metal using Shell elements, modeling of connectors, actuators, axles and bolts / pins using modified Beam elements, modeling of bearing nodes using RBE3 type elements, modeling of the scoop bucket and the boom using Rigid type elements. The digital model of the jib boom is shown in fig. 3. Fig. 3. Discrete model of the jib arm According to technical parameters of the loader the analysis assumed four positions of the jib boom. One of assumed position is shown in fig. 4. Stress analysis was performed for 18 different cases. Each of these assumed a fixed position of the scoop bucket, with the stress load being generated by the actuators. A simplifications was made, assuming the scoop bucket as an ideally rigid construction, similarly a same assumption was made for its rotation axis 9. Fig. 4. Diagram of jib boom positions and loads The stress calculations for the jib boom were performed using finite element analysis using the I-DEAS 10 system. Sample stress calculations are presented in fig. 5. 274 Short paper 31 E. Rusiski, J. Czmochowski, P. Moczko 3.1. Macroscopic and fractographic evaluation Analysis and modelling Fig. 6. Topography of the fracture zone Fig. 5. Contour lines representing stress levels in the boom, according to the Huber-Mises theory The computations provided a 3D representation of the stress levels as well as show the deflection of the jib boom, depending on the load size and geometrical configuration. The most representative case was determined. The maximum combined stresses in this case are: MAX = 413 MPa Stress concentration is caused at a structural notch at the booms actuator mounting point. At this point there is also a change in the rigidity of the booms side strip caused by the bushing for the actuator mechanisms mounting bolt. This is also the point where the boom cracking was initiated. 3. Material evaluation The damaged jib boom as well the materials it is made of were evaluated using the following methods 11: macroscopic visual inspection as well as stereomicroscope inspection using magnifications up to 30x, fractographic evaluation - scanning electron microscope, chemical analysis, microscopic evaluation, hardness tests. 3.1. Macroscopic and fractographic evaluation The boom supplied for testing had a fracture running across the entire cross section of the boom (fig. 6). The fractographic analysis concluded that the fracture was an immediate brittle fracture, originating at points marked A and B in fig. 6, located along the S1 weld joint fusion with the boom material. Analyzing the surface topography of the fracture points A and B using a scanning electron microscope showed a smoothed surface, which is characteristic for fracture origination points. The fractures at points A and B probably originated already during or shortly after welding, and ultimately lead to an immediate brittle fracture of the jib boom. It is also probable that the welding fractures lead to a small fatigue zone. Surface morphology observed at point A is shown in fig. 7. Macroscopic evaluation of the weld joint was performed at the cross microsection of the S2 fillet weld (fig. 8). The weld surface was etched using Adlers etching solution (Ma11Fe). Numerical and experimental analysis of a mine s loader boom crack 32 Fig.7. Surface morphology at point A - fig.6. SEM image Observations proved incomplete weld penetration at the root of the fillet weld. Both welds as well as the weld fusion line also exhibited numerous welding errors in the form of interruptions as well as gas bubbles. The macrostructure examination of the weld joint also revealed various structures in the flat bar, jib boom and weld joint materials as well as within the HAZ (heat affected zone). Fig. 8. Weld joint between the flat bar and jib boom 3.2. Microscopic evaluation Microscopic evaluation was performed for the cross micros ecti on of the weld joint, which was earlier subject of the macroscopic evaluation. After etching with Mi1Fe it was concluded that the jib boom material microstructure outside of the weld joint is a ferritic- perlite structure exhibiting slight characteristics of a Widmannsttten structure (fig. 9). This type of structure results in weakening of the mechanical parameters and also causes problems during welding, because of the non-homogeneous chemical compos iti on of the material . The weld area has a perlite (pseudoeutect oid) structure with local occurrences of bainite. The pseudoeutectoid structure of the joint suggests that welding was performed using a medium carbon welding rod. The heat-affect ed zone exhibits small plate perlite structures as well as areas of martensite structure, where the HAZ was hardened, thus leading to formation of brittle cracks. When comparing the jib boom material and the HAZ there is a clear differe nce betwee n the ferriti c-pe rlit e structure of the jib boom and the perlite structure of the HAZ and weld joint. This rapid change of structure leads to significa nt change of param et ers at the connection of the welded material and weld joint. It suggests 275 Journa l of Achie ve me nts in Materia ls and Manuf a cturing Engine ering also, that the weld was performed using an improper welding rod, having a significantly different composition as compared to the welded materials. The microstructure of the weld joint, HAZ and the welding errors are shown in fig. 10. Fig. 9. Microstructure of the jib boom material Fig. 10. Microstructure of the weld - HAZ and weld joint 3.3. Hardness testing Hardness was checked using the Vickers method, using single impressions according to the Polish standard PN-EN 1043-1. The tests showed significant hardening of the HAZ at the weld joint with the jib boom material with local hardening of the material, which lead to occurrence of the brittle fractures. 4. conclusions The main purposes of the paper were to discuss designing problems of machines used in underground mining and investigation of its reasons based on cracked boom of mining machine, which suffered damage as shown in fig. 2. Numerical and experi m ent al approaches were used in order to achieve wider point of view of such accidents, which happens in this type of machines. Based on the performed boom material tests, evaluation of the fracture, weld joint between the flat bar with the lubricati on groove and the jib boom side strip as well as the MES stress analysis , it was found that: 1. The microscopic evaluation of fragments etched using Mi1Fe, proved that the material of the jib boom outside of the weld has a ferritic-perlite structure showing slight evidence of Widmannsttten structure characteristics. This structure resulted from improper heat treatment and forging, meaning that the metal used for the jib boom was insufficiently rolled and thus has lower mechanical strength. It also makes welding of this material difficult. 2. Calculation of the carbon equivalent according to the Polish standard PN-86/H-84018, based on the chemical composition Volume 17 Issue 1-2 July-August 2006 of this steel determined during testing, is 0,453 % and is close to the allowable value of 0,46 %. However, the evaluated jib boom steel has poor weldability, which should be taken into account before performing any welding repairs; CE = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15 = 0,22 + 1,40/6 = 0,453 % 0,46 % 3. The finite element analysis performed for a wide variety of loads proved that the brittle fracture occurred at a structural notch, causing concentration of stress forces. The maximum combined stresses in cases where the jib boom was subjected to torsion forces amounted to: MAX = 336
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高端國際會議翻譯派遣及綜合保障合同
- 社區(qū)公共設施安全責任書及維護管理合同
- 納米材料質量檢測技術補充協(xié)議
- 調解離婚財產(chǎn)分割協(xié)議書及執(zhí)行細則
- 人才安置小區(qū)共有產(chǎn)權住房分割與買賣協(xié)議
- 商業(yè)航天發(fā)射場股權合作與技術支持協(xié)議
- 生物識別支付終端定制開發(fā)及銀行金融解決方案合同
- 消毒產(chǎn)品市場推廣補充協(xié)議
- 校本課程《三字經(jīng)》教學工作總結模版
- 現(xiàn)代物流企業(yè)特種車輛采購與培訓服務協(xié)議
- 防雷和接地安裝施工組織方案
- 管理學原理第六章 指揮課件
- 工序標準工時及產(chǎn)能計算表
- 消防安全知識宣傳-主題班會課件(共24張PPT)
- 材料物理與化學知識點講解
- 生產(chǎn)中的七大浪費(PPT35頁)
- YY∕T 0617-2021 一次性使用人體末梢血樣采集容器
- 《漢服文化介紹》PPT課件(完整版)
- 5以內的加減法(可直接打印)
- 車駕管知識題庫查驗業(yè)務知識試題庫(附答案)
- 鋼結構焊接變形的火焰矯正方法
評論
0/150
提交評論