版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省棗陽市興隆一中學中考五模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖:A、B、C、D四點在一條直線上,若AB=CD,下列各式表示線段AC錯誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB2.為了開展陽光體育活動,某班計劃購買毽子和跳繩兩種體育用品,共花費35元,毽子單價3元,跳繩單價5元,購買方案有()A.1種 B.2種 C.3種 D.4種3.計算(—2)2-3的值是()A、1B、2C、—1D、—24.下列圖案中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.5.如圖,點從矩形的頂點出發(fā),沿以的速度勻速運動到點,圖是點運動時,的面積隨運動時間變化而變化的函數(shù)關系圖象,則矩形的面積為()A. B. C. D.6.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+317.按一定規(guī)律排列的一列數(shù)依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數(shù)中的第100個數(shù)是()A.﹣ B. C. D.8.如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.9.下列運算正確的()A.(b2)3=b5 B.x3÷x3=x C.5y3?3y2=15y5 D.a(chǎn)+a2=a310.如圖,△ABC是⊙O的內(nèi)接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°11.分別寫有數(shù)字0,﹣1,﹣2,1,3的五張卡片,除數(shù)字不同外其他均相同,從中任抽一張,那么抽到負數(shù)的概率是()A. B. C. D.12.(3分)如圖,是按一定規(guī)律排成的三角形數(shù)陣,按圖中數(shù)陣的排列規(guī)律,第9行從左至右第5個數(shù)是()A.2 B. C.5 D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.14.一艘貨輪以182km/h的速度在海面上沿正東方向航行,當行駛至A處時,發(fā)現(xiàn)它的東南方向有一燈塔B,貨輪繼續(xù)向東航行30分鐘后到達C處,發(fā)現(xiàn)燈塔B在它的南偏東15°方向,則此時貨輪與燈塔B的距離是________km.15.若二次根式有意義,則x的取值范圍為__________.16.若m+=3,則m2+=_____.17.從長度分別是3,4,5的三條線段中隨機抽出一條,與長為2,3的兩條線段首尾順次相接,能構(gòu)成三角形的概率是_______.18.在△ABC中,MN∥BC分別交AB,AC于點M,N;若AM=1,MB=2,BC=3,則MN的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)x取哪些整數(shù)值時,不等式5x+2>3(x-1)與x≤2-x都成立?20.(6分)如圖,輪船從點A處出發(fā),先航行至位于點A的南偏西15°且點A相距100km的點B處,再航行至位于點A的南偏東75°且與點B相距200km的點C處.(1)求點C與點A的距離(精確到1km);(2)確定點C相對于點A的方向.(參考數(shù)據(jù):2≈1.41421.(6分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積最大,若存在,求出點F的坐標和最大值;若不存在,請說明理由;(3)平行于DE的一條動直線l與直線BC相較于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求P點的坐標.22.(8分)中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:參加比賽的學生共有____名;在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.23.(8分)如圖,△DEF是由△ABC通過一次旋轉(zhuǎn)得到的,請用直尺和圓規(guī)畫出旋轉(zhuǎn)中心.24.(10分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結(jié)論).25.(10分)如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點F,設AB=m,BC=n.(1)求證:∠BDA=∠ECA.(2)若m=,n=3,∠ABC=75°,求BD的長.(3)當∠ABC=____時,BD最大,最大值為____(用含m,n的代數(shù)式表示)(4)試探究線段BF,AE,EF三者之間的數(shù)量關系。26.(12分)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.(1)求證:DE是⊙O的切線;(2)若tanA=,探究線段AB和BE之間的數(shù)量關系,并證明;(3)在(2)的條件下,若OF=1,求圓O的半徑.27.(12分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計圖:(1)樣本中的總?cè)藬?shù)為人;扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)線段上的等量關系逐一判斷即可.【詳解】A、∵AD-CD=AC,∴此選項表示正確;B、∵AB+BC=AC,∴此選項表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項表示正確.故答案選:C.【點睛】本題考查了線段上兩點間的距離及線段的和、差的知識,解題的關鍵是找出各線段間的關系.2、B【解析】
首先設毽子能買x個,跳繩能買y根,根據(jù)題意列方程即可,再根據(jù)二元一次方程求解.【詳解】解:設毽子能買x個,跳繩能買y根,根據(jù)題意可得:3x+5y=35,y=7-x,∵x、y都是正整數(shù),∴x=5時,y=4;x=10時,y=1;∴購買方案有2種.故選B.【點睛】本題主要考查二元一次方程的應用,關鍵在于根據(jù)題意列方程.3、A【解析】本題考查的是有理數(shù)的混合運算根據(jù)有理數(shù)的加法、乘方法則,先算乘方,再算加法,即得結(jié)果。解答本題的關鍵是掌握好有理數(shù)的加法、乘方法則。4、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念解答.【詳解】A.不是軸對稱圖形,是中心對稱圖形;B.是軸對稱圖形,是中心對稱圖形;C.不是軸對稱圖形,也不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.5、C【解析】
由函數(shù)圖象可知AB=2×2=4,BC=(6-2)×2=8,根據(jù)矩形的面積公式可求出.【詳解】由函數(shù)圖象可知AB=2×2=4,BC=(6-2)×2=8,∴矩形的面積為4×8=32,故選:C.【點睛】本題考查動點運動問題、矩形面積等知識,根據(jù)圖形理解△ABP面積變化情況是解題的關鍵,屬于中考常考題型.6、C【解析】
本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側(cè)并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.7、C【解析】
根據(jù)按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,可知符號規(guī)律為奇數(shù)項為負,偶數(shù)項為正;分母為3、7、9、……,型;分子為型,可得第100個數(shù)為.【詳解】按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,按此規(guī)律,奇數(shù)項為負,偶數(shù)項為正,分母為3、7、9、……,型;分子為型,可得第n個數(shù)為,∴當時,這個數(shù)為,故選:C.【點睛】本題屬于規(guī)律題,準確找出題目的規(guī)律并將特殊規(guī)律轉(zhuǎn)化為一般規(guī)律是解決本題的關鍵.8、D【解析】
連接EB,設圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長度,最后勾股定理即可求出CE的長度.利用銳角三角函數(shù)的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【點睛】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識,綜合程度較高,屬于中等題型.9、C【解析】分析:直接利用冪的乘方運算法則以及同底數(shù)冪的除法運算法則、單項式乘以單項式和合并同類項法則.詳解:A、(b2)3=b6,故此選項錯誤;B、x3÷x3=1,故此選項錯誤;C、5y3?3y2=15y5,正確;D、a+a2,無法計算,故此選項錯誤.故選C.點睛:此題主要考查了冪的乘方運算以及同底數(shù)冪的除法運算、單項式乘以單項式和合并同類項,正確掌握相關運算法則是解題關鍵.10、B【解析】
由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內(nèi)接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點睛】本題考查了圓周角定理,熟練運用圓周角定理是解決問題的關鍵.11、B【解析】試題分析:根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,從0,﹣1,﹣2,1,3中任抽一張,那么抽到負數(shù)的概率是.故選B.考點:概率.12、B【解析】
根據(jù)三角形數(shù)列的特點,歸納出每一行第一個數(shù)的通用公式,即可求出第9行從左至右第5個數(shù).【詳解】根據(jù)三角形數(shù)列的特點,歸納出每n行第一個數(shù)的通用公式是,所以,第9行從左至右第5個數(shù)是=.故選B【點睛】本題主要考查歸納推理的應用,根據(jù)每一行第一個數(shù)的取值規(guī)律,利用累加法求出第9行第五個數(shù)的數(shù)值是解決本題的關鍵,考查學生的推理能力.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對應邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據(jù)題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1【點睛】此題考查了相似三角形的判定與性質(zhì),三角函數(shù)的定義.此題難度適中,解題的關鍵是準確作出輔助線,注意轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應用.14、1【解析】
作CE⊥AB于E,根據(jù)題意求出AC的長,根據(jù)正弦的定義求出CE,根據(jù)三角形的外角的性質(zhì)求出∠B的度數(shù),根據(jù)正弦的定義計算即可.【詳解】作CE⊥AB于E,12km/h×30分鐘=92km,∴AC=92km,∵∠CAB=45°,∴CE=AC?sin45°=9km,∵燈塔B在它的南偏東15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC=CEsin∠B=故答案為:1.【點睛】本題考查的是解直角三角形的應用-方向角問題,正確標注方向角、熟記銳角三角函數(shù)的定義是解題的關鍵.15、x≥﹣.【解析】
考點:二次根式有意義的條件.根據(jù)二次根式的意義,被開方數(shù)是非負數(shù)求解.解:根據(jù)題意得:1+2x≥0,解得x≥-.故答案為x≥-.16、7【解析】分析:把已知等式兩邊平方,利用完全平方公式化簡,即可求出答案.詳解:把m+=3兩邊平方得:(m+)2=m2++2=9,則m2+=7,故答案為:7點睛:此題考查了分式的混合運算,以及完全平方公式,熟練掌握運算法則及公式是解本題的關鍵.17、【解析】共有3種等可能的結(jié)果,它們是:3,2,3;4,2,3;5,2,3;其中三條線段能夠成三角形的結(jié)果為2,所以三條線段能構(gòu)成三角形的概率=.故答案為.18、1【解析】
∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案為1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、-2,-1,0,1【解析】
解不等式5x+2>3(x-1)得:得x>-2.5;解不等式x≤2-x得x≤1.則這兩個不等式解集的公共部分為,因為x取整數(shù),則x取-2,-1,0,1.故答案為-2,-1,0,1【點睛】本題考查了求不等式組的整數(shù)解,先求出每個不等式的解集,再求出它們的公共部分,最后確定公共的整數(shù)解(包括正整數(shù),0,負整數(shù)).20、(1)173;(2)點C位于點A的南偏東75°方向.【解析】試題分析:(1)作輔助線,過點A作AD⊥BC于點D,構(gòu)造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC為直角三角形;然后根據(jù)方向角的定義,即可確定點C相對于點A的方向.試題解析:解:(1)如答圖,過點A作AD⊥BC于點D.由圖得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=503.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=AD答:點C與點A的距離約為173km.(2)在△ABC中,∵AB2+AC2=1002+(1003)2=40000,BC2=2002=40000,∴AB2+AC2=BC2.∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:點C位于點A的南偏東75°方向.考點:1.解直角三角形的應用(方向角問題);2.銳角三角函數(shù)定義;3.特殊角的三角函數(shù)值;4.勾股定理和逆定理.21、(1)、y=-+x+4;(2)、不存在,理由見解析.【解析】試題分析:(1)、首先設拋物線的解析式為一般式,將點C和點A意見對稱軸代入求出函數(shù)解析式;(2)、本題利用假設法來進行證明,假設存在這樣的點,然后設出點F的坐標求出FH和FG的長度,然后得出面積與t的函數(shù)關系式,根據(jù)方程無解得出結(jié)論.試題解析:(1)、∵拋物線y=a+bx+c(a≠0)過點C(0,4)∴C=4①∵-=1∴b=-2a②∵拋物線過點A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴拋物線的解析式為:y=-+x+4(2)、不存在假設存在滿足條件的點F,如圖所示,連結(jié)BF、CF、OF,過點F作FH⊥x軸于點H,F(xiàn)G⊥y軸于點G.設點F的坐標為(t,+t+4),其中0<t<4則FH=+t+4FG=t∴△OBF的面積=OB·FH=×4×(+t+4)=-+2t+8△OFC的面積=OC·FG=2t∴四邊形ABFC的面積=△AOC的面積+△OBF的面積+△OFC的面積=-+4t+12令-+4t+12=17即-+4t-5=0△=16-20=-4<0∴方程無解∴不存在滿足條件的點F考點:二次函數(shù)的應用22、(1)20;(2)40,1;(3).【解析】試題分析:(1)根據(jù)等級為A的人數(shù)除以所占的百分比求出總?cè)藬?shù);(2)根據(jù)D級的人數(shù)求得D等級扇形圓心角的度數(shù)和m的值;(3)列表得出所有等可能的情況數(shù),找出一男一女的情況數(shù),即可求出所求的概率.試題解析:解:(1)根據(jù)題意得:3÷15%=20(人),故答案為20;(2)C級所占的百分比為×100%=40%,表示“D等級”的扇形的圓心角為×360°=1°;故答案為40、1.(3)列表如下:所有等可能的結(jié)果有6種,其中恰好是一名男生和一名女生的情況有4種,則P恰好是一名男生和一名女生==.23、見解析【解析】試題分析:首先根據(jù)旋轉(zhuǎn)的性質(zhì),找到兩組對應點,連接這兩組對應點;然后作連接成的兩條線段的垂直平分線,兩垂直平分線的交點即為旋轉(zhuǎn)中心,據(jù)此解答即可.解:如圖所示,點P即為所求作的旋轉(zhuǎn)中心.24、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點F是AB的中點.(2)△EFC是等腰直角三角形.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM(ASA),∴AM=FM.設AM=x,則AF=2x,DN=x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考點:四邊形綜合題.25、135°m+n【解析】試題分析:(1)由已知條件證△ABD≌△AEC,即可得到∠BDA=∠CEA;(2)過點E作EG⊥CB交CB的延長線于點G,由已知條件易得∠EBG=60°,BE=2,這樣在Rt△BEG中可得EG=,BG=1,結(jié)合BC=n=3,可得GC=4,由長可得EC=,結(jié)合△ABD≌△AEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此當E、B、C三點共線時,EC最大=BE+BC=,此時BD最大=EC最大=;(4)由△ABD≌△AEC可得∠AEC=∠ABD,結(jié)合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,從而可得EF2=BE2-BF2=2AE2-BF2.試題解析:(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,∴△EAC≌△BAD,∴∠BDA=∠ECA;(2)如下圖,過點E作EG⊥CB交CB的延長線于點G,∴∠EGB=90°,∵在等腰直角△ABE,∠BAE=90°,AB=m=,∴∠ABE=45°,BE=2,∵∠ABC=75°,∴∠EBG=180°-75°-45°=60°,∴BG=1,EG=,∴GC=BG+BC=4,∴CE=,∵△EAC≌△BAD,∴BD=EC=;(3)由(2)可知,BE=,BC=n,因此當E、B、C三點共線時,EC最大=BE+BC=,∵BD=EC,∴BD最大=EC最大=,此時∠ABC=180°-∠ABE=180°-45°=135°,即當∠ABC=135°時,BD最大=;(4)∵△ABD≌△AEC,∴∠AEC=∠ABD,∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,∴∠ABD+∠ABE+∠CEB=90°,∴∠BFE=180°-90°=90°,∴EF2+BF2=BE2,又∵在等腰Rt△ABE中,BE2=2AE2,∴2AE2=EF2+BF2.點睛:(1)解本題第2小題的關鍵是過點E作EG⊥CB的延長線于點G,即可由已知條件求得BE的長,進一步求得BG和EG的長就可在Rt△EGC中求得EC的長了,結(jié)合(1)中所證的全等三角形即可得到BD的長了;(2)解第3小題時,由題意易知,當AB和BC的值確定后,BE的值就確定了,則由題意易得當E、B、C三點共線時,EC=EB+BC=是EC的最大值了.26、(1)答案見解析;(2)AB=1BE;(1)1.【解析】試題分析:(1)先判斷出∠OCF+∠CFO=90°,再判斷出∠OCF=∠ODF,即可得出結(jié)論;(2)先判斷出∠BDE=∠A,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版UPS設備質(zhì)保與支持服務協(xié)議版B版
- 專業(yè)技術服務勞務協(xié)議(2024版)版B版
- 2024年綠色屋頂設計與施工合同范本3篇
- 2024房地產(chǎn)融資合同范本
- 【放射科】精準醫(yī)療幕后的先鋒團隊
- 11-1《諫逐客書 》(說課稿)-2024-2025學年高一語文下學期同步教學說課稿專輯(統(tǒng)編版必修下冊)
- 福建省南平市塔前中學2022年高二數(shù)學理聯(lián)考試題含解析
- 2024文化石礦山開采及加工合作合同范本3篇
- 雙十一旅行新品盛宴
- 2024港口物流信息化建設合同
- 化學-山東省濰坊市、臨沂市2024-2025學年度2025屆高三上學期期末質(zhì)量檢測試題和答案
- 領導學 課件全套 孫健 第1-9章 領導要素- 領導力開發(fā)
- 2024-2025學年七年級上學期語文期末考前押題卷(統(tǒng)編版2024+含答案)
- 土建定額培訓課件
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之13:“6策劃-6.2創(chuàng)新目標及其實現(xiàn)的策劃”(雷澤佳編制-2025B0)
- 2024年保護環(huán)境的建議書范文(33篇)
- 2025新譯林版英語七年級下單詞默寫表
- 退休人員公益活動合作合同
- 四年級數(shù)學(四則混合運算帶括號)計算題專項練習與答案
- 急診創(chuàng)傷疼痛護理
- 2022年期貨從業(yè)資格《期貨基礎知識》考試題庫(含典型題)
評論
0/150
提交評論