版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第05講數(shù)列章節(jié)總結(jié)(精講)一、數(shù)列求通項題型一:數(shù)列前SKIPIF1<0項和SKIPIF1<0法題型二:數(shù)列前SKIPIF1<0項積SKIPIF1<0法題型三:累加法;累乘法題型四:構(gòu)造法題型五:倒數(shù)法題型六:隔項等差(等比)數(shù)列二、數(shù)列求和題型一:倒序相加法題型二:分組求和法題型三:裂項相消法題型四:錯位相減法題型五:奇偶項討論求和題型六:插入新數(shù)列混合求和一、數(shù)列求通項題型一:數(shù)列前SKIPIF1<0項和SKIPIF1<0法例題1.設(shè)正項數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0.求SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),∴SKIPIF1<0,因為SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是以7為首項,3為公差的等差數(shù)列,∴SKIPIF1<0.例題2.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0,故數(shù)列SKIPIF1<0為公差為3的等差數(shù)列,通項公式為SKIPIF1<0,例題3.已知數(shù)列SKIPIF1<0的首項SKIPIF1<0,前SKIPIF1<0項和為SKIPIF1<0,且滿足SKIPIF1<0.求SKIPIF1<0及SKIPIF1<0;【答案】(1)SKIPIF1<0;SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0①,SKIPIF1<0②,①SKIPIF1<0②得SKIPIF1<0即SKIPIF1<0.又SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,SKIPIF1<0為公比的等比數(shù)列.故SKIPIF1<0.例題4.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0(2)SKIPIF1<0⑴SKIPIF1<0
①SKIPIF1<0
②①SKIPIF1<0②可得SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0例題5.已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0(SKIPIF1<0).(2)證明見解析由已知得SKIPIF1<0由SKIPIF1<0,①得SKIPIF1<0時,SKIPIF1<0,②①-②得SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0也適合此式,∴SKIPIF1<0(SKIPIF1<0).例題6.各項均為正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0為等比數(shù)列,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0?SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0①,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0②,由①-②得SKIPIF1<0∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴數(shù)列SKIPIF1<0是公差為1,首項為1的等差數(shù)列.∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0為等比數(shù)列,∴SKIPIF1<0例題7.設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0;因為SKIPIF1<0,SKIPIF1<0,①所以當(dāng)SKIPIF1<0時,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,②①-②得,SKIPIF1<0.所以SKIPIF1<0.因為SKIPIF1<0,適合上式,所以SKIPIF1<0.例題8.已知正項數(shù)列SKIPIF1<0滿足SKIPIF1<0,前n項和SKIPIF1<0滿足SKIPIF1<0求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0;解:∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0是以1為首項,1為公差的等差數(shù)數(shù)列,∴SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0也成立,∴SKIPIF1<0.例題9.已知數(shù)列SKIPIF1<0的前n項和SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0.求證:數(shù)列SKIPIF1<0是等差數(shù)列;【答案】(1)證明見解析證明:∵SKIPIF1<0∴SKIPIF1<0由已知易得SKIPIF1<0,∴SKIPIF1<0∴數(shù)列SKIPIF1<0是首項SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列;例題10.已知首項為1的數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0依題意,SKIPIF1<0,故SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是首項為1,公差為1的等差數(shù)列,所以SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,又當(dāng)n=1時,SKIPIF1<0也滿足上式,所以SKIPIF1<0.題型二:數(shù)列前SKIPIF1<0項積SKIPIF1<0法例題1.?dāng)?shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項積為SKIPIF1<0,且SKIPIF1<0.求SKIPIF1<0和SKIPIF1<0的通項公式;【答案SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是以1為首項,2為公比的等比數(shù)列,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時也符合,所以SKIPIF1<0.例題2.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式:【答案】(1)SKIPIF1<0;由題意,數(shù)列SKIPIF1<0滿足SKIPIF1<0,則:當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,所以:SKIPIF1<0.SKIPIF1<0由于:SKIPIF1<0,所以:SKIPIF1<0,則:SKIPIF1<0SKIPIF1<0.例題3.設(shè)各項為正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項積為SKIPIF1<0,且SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0是等差數(shù)列;(2)求數(shù)列SKIPIF1<0的通項公式.【答案】(1)證明見解析;(2)SKIPIF1<0(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,2為公差的等差數(shù)列.(2)由(1)可知SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,經(jīng)檢驗,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,由(1)知SKIPIF1<0,綜上所述,SKIPIF1<0例題4.已知數(shù)列SKIPIF1<0的前n項積SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)記SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項為SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,也符合SKIPIF1<0.故SKIPIF1<0的通項公式為SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是以SKIPIF1<0為首項,2為公差的等差數(shù)列,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為SKIPIF1<0.例題5.設(shè)首項為2的數(shù)列SKIPIF1<0的前SKIPIF1<0項積為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,由累乘法得,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0也滿足上式,∴SKIPIF1<0.(2)由(1)知,SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0例題6.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項積SKIPIF1<0,數(shù)列SKIPIF1<0為等差數(shù)列,且SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0與SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0.(2)SKIPIF1<0.(1)解:因為數(shù)列SKIPIF1<0的前n項積SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,兩式相除得SKIPIF1<0,因為數(shù)列SKIPIF1<0為等差數(shù)列,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0的公差為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.(2)解:由(1)得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.題型三:累加法;累乘法例題1.(1)已知數(shù)列SKIPIF1<0是正項數(shù)列,SKIPIF1<0,且SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式;(2)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.解:(1)由SKIPIF1<0,得SKIPIF1<0,對任意的SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以,數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,SKIPIF1<0,SKIPIF1<0;(2)由SKIPIF1<0,得:SKIPIF1<0,又SKIPIF1<0,所以,數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,SKIPIF1<0為公比的等比數(shù)列,得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,累加得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0也滿足SKIPIF1<0,故對任意的SKIPIF1<0,SKIPIF1<0.例題2.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且滿足SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由SKIPIF1<0,得當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,兩式相減得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是首項為2,公比為2的等比數(shù)列,SKIPIF1<0.由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,累加得SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.例題3.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,已知SKIPIF1<0,且當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0是等比數(shù)列;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)證明見解析(2)SKIPIF1<0(1)證明:由題意,當(dāng)SKIPIF1<0時,∴SKIPIF1<0,整理,得SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴數(shù)列SKIPIF1<0是以2為首項,2為公比的等比數(shù)列;(2)由(1)知,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,各項相加,可得SKIPIF1<0,當(dāng)SKIPIF1<0也成立,SKIPIF1<0-1,SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,綜上,SKIPIF1<0.例題4.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項公式.【答案】(1)SKIPIF1<0(1)解:由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,由累加法得SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0滿足SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0.例題5.?dāng)?shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(SKIPIF1<0,SKIPIF1<0).(1)證明數(shù)列SKIPIF1<0是等比數(shù)列,并求出數(shù)列SKIPIF1<0的通項公式;【答案】(1)證明見解析,SKIPIF1<0(1)解:由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,∴數(shù)列SKIPIF1<0是首項為2,公比為2的等比數(shù)列,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0,又當(dāng)SKIPIF1<0時,SKIPIF1<0符合上式,∴SKIPIF1<0.例題6.已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0由已知SKIPIF1<0以及SKIPIF1<0可知SKIPIF1<0,從而有SKIPIF1<0,根據(jù)累乘法得:SKIPIF1<0,整理得:SKIPIF1<0,由于該式對于SKIPIF1<0也成立,于是數(shù)列SKIPIF1<0的通項公式為:SKIPIF1<0;例題7.?dāng)?shù)列SKIPIF1<0與SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0是等比數(shù)列,SKIPIF1<0,求SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0;(2)若SKIPIF1<0是各項均為正數(shù)的等比數(shù)列,前三項和為14,求SKIPIF1<0的通項公式.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)設(shè)SKIPIF1<0的公比為q,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴數(shù)列SKIPIF1<0是等差數(shù)列,且公差SKIPIF1<0,SKIPIF1<0前n項和SKIPIF1<0.(2)設(shè)SKIPIF1<0的公比為p,則SKIPIF1<0,且SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.即SKIPIF1<0,∴SKIPIF1<0.SKIPIF1<0符合上式,∴SKIPIF1<0.例題8.已知SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0n項和,SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0成等差數(shù)列.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,求正整數(shù)SKIPIF1<0的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.(1)由題意知當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,整理得SKIPIF1<0,由SKIPIF1<0,∴SKIPIF1<0,經(jīng)檢驗,SKIPIF1<0也符合SKIPIF1<0.∴當(dāng)SKIPIF1<0時,SKIPIF1<0.由SKIPIF1<0也滿足SKIPIF1<0,∴數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0.(2)由(1)得SKIPIF1<0,∴SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0.例題9.已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0.?dāng)?shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0;SKIPIF1<0;(1)設(shè)等差數(shù)列SKIPIF1<0的公差為d,由題意可得:SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0;因為數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0滿足,所以數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0.例題10.?dāng)?shù)列SKIPIF1<0滿足:SKIPIF1<0;數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0.求數(shù)列SKIPIF1<0和SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0與條件等式兩邊相減,得SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0.所以SKIPIF1<0=1,SKIPIF1<0.故有SKIPIF1<0所求通項公式分別為SKIPIF1<0和SKIPIF1<0題型四:構(gòu)造法例題1.設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0因為SKIPIF1<0,①SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0SKIPIF1<0時,SKIPIF1<0②①-②得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0是SKIPIF1<0為首項,SKIPIF1<0為公比的等比數(shù)列,故SKIPIF1<0例題2.已知數(shù)列SKIPIF1<0的首項SKIPIF1<0,且滿足SKIPIF1<0(SKIPIF1<0),求數(shù)列SKIPIF1<0的通項公式.【答案】SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0.例題3.已知數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式.【答案】SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴數(shù)列SKIPIF1<0是等差數(shù)列,公差為SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.例題4.設(shè)數(shù)列SKIPIF1<0滿足:SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式.【答案】SKIPIF1<0.由SKIPIF1<0知:SKIPIF1<0,而SKIPIF1<0,∴數(shù)列SKIPIF1<0是首項、公差為SKIPIF1<0的等差數(shù)列,即SKIPIF1<0,∴SKIPIF1<0.例題5.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.解:由SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0SKIPIF1<0=1,則數(shù)列SKIPIF1<0是首項為SKIPIF1<0=1,公差為1的等差數(shù)列,則SKIPIF1<0=SKIPIF1<0,即SKIPIF1<0;例題6.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,其中SKIPIF1<0,滿足SKIPIF1<0.證明數(shù)列SKIPIF1<0為等比數(shù)列;【答案】(1)證明見解析;由SKIPIF1<0可得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0所以數(shù)列SKIPIF1<0是首項為2,公比為2的等比數(shù)列例題7.已知數(shù)列SKIPIF1<0中,SKIPIF1<0.證明數(shù)列SKIPIF1<0是等比數(shù)列并求數(shù)列SKIPIF1<0的通項公式;【答案】證明見解析;SKIPIF1<0.解:因為SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,且SKIPIF1<0.所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,3為公比的等比數(shù)列.因此SKIPIF1<0,所以SKIPIF1<0.題型五:倒數(shù)法例題1.已知數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0證明:數(shù)列SKIPIF1<0是等比數(shù)列【答案】(1)證明見解析;證明:由SKIPIF1<0,知SKIPIF1<0又SKIPIF1<0,∴SKIPIF1<0是以SKIPIF1<0為首項,3為公比的等比數(shù)列例題2.設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0;(1)由SKIPIF1<0可得:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,SKIPIF1<0為公比的等比數(shù)列,SKIPIF1<0,整理可得:SKIPIF1<0.例題3.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式;【答案】(Ⅰ)SKIPIF1<0;SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0為首項,以SKIPIF1<0為公比的等比數(shù)列,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0;例題4.在數(shù)列SKIPIF1<0中,SKIPIF1<0求數(shù)列SKIPIF1<0的通項;【答案】(1)SKIPIF1<0解:(1)由已知得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,SKIPIF1<0為公差的等差數(shù)列,SKIPIF1<0,SKIPIF1<0例題5.在數(shù)列SKIPIF1<0中,SKIPIF1<0,并且對于任意SKIPIF1<0,都有SKIPIF1<0.證明數(shù)列SKIPIF1<0為等差數(shù)列,并求SKIPIF1<0的通項公式;【答案】(1)答案見解析,SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,即:SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是首項為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列.根據(jù)等差數(shù)列通項公式可得:SKIPIF1<0SKIPIF1<0,故:SKIPIF1<0.題型六:隔項等差(等比)數(shù)列例題1.設(shè)各項均不等于零的數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,已知SKIPIF1<0.求SKIPIF1<0的值,并求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0因為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,兩式相減得:SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0的奇數(shù)項是以SKIPIF1<0為首項,公差為4的等差數(shù)列,所以SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0的偶數(shù)項是以SKIPIF1<0為首項,公差為4的等差數(shù)列,所以SKIPIF1<0,所以,SKIPIF1<0.例題2.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.計算SKIPIF1<0的值,求SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0,SKIPIF1<0解:當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,由題知SKIPIF1<0①,SKIPIF1<0②,由②SKIPIF1<0①得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,于是:數(shù)列SKIPIF1<0的奇數(shù)項是以SKIPIF1<0為首項,以4為公差的等差數(shù)列,即SKIPIF1<0,偶數(shù)項是以SKIPIF1<0為首項,以4為公差的等差數(shù)列,即SKIPIF1<0所以SKIPIF1<0的通項公式SKIPIF1<0;例題3.已知數(shù)列SKIPIF1<0各項都不為SKIPIF1<0,SKIPIF1<0且滿足SKIPIF1<0,(1)求SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0;SKIPIF1<0①當(dāng)SKIPIF1<0時,SKIPIF1<0②①SKIPIF1<0②SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的奇數(shù)項和偶數(shù)項各自成等差數(shù)列且SKIPIF1<0SKIPIF1<0為奇數(shù)),SKIPIF1<0(SKIPIF1<0為偶數(shù)SKIPIF1<0例題4.設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且滿足SKIPIF1<0(SKIPIF1<0為常數(shù)).(1)若SKIPIF1<0,求SKIPIF1<0.(2)是否存在實數(shù)SKIPIF1<0,使得數(shù)列SKIPIF1<0為等差數(shù)列?若存在,求出SKIPIF1<0的值;若不存在,請說明理由.【答案】(1)SKIPIF1<0(2)存在,SKIPIF1<0解:(1)由SKIPIF1<0可得SKIPIF1<0,兩式相減可得SKIPIF1<0,即SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.(2)解:存在SKIPIF1<0,使得數(shù)列SKIPIF1<0為等差數(shù)列.理由如下.當(dāng)SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0.假設(shè)存在SKIPIF1<0,使得SKIPIF1<0為等差數(shù)列,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,從而SKIPIF1<0,故數(shù)列SKIPIF1<0的奇數(shù)項構(gòu)成等差數(shù)列,偶數(shù)項也構(gòu)成等差數(shù)列,且公差均為2.當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0;當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0符合題意.例題5.(2022·山東·肥城市教學(xué)研究中心模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項公式SKIPIF1<0;【答案】(1)SKIPIF1<0解:由題意,當(dāng)SKIPIF1<0時,SKIPIF1<0,可得SKIPIF1<0,因為SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0,所以數(shù)列SKIPIF1<0的奇數(shù)項和偶數(shù)項都是公比為SKIPIF1<0的等比數(shù)列.所以當(dāng)SKIPIF1<0為奇數(shù)時,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時,設(shè)SKIPIF1<0,則SKIPIF1<0.因此,SKIPIF1<0.例題6.(2022·浙江省富陽中學(xué)高三階段練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0依題意,數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,兩式相除并化簡得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,其中SKIPIF1<0的首項為SKIPIF1<0,SKIPIF1<0的首項為SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0.二、數(shù)列求和題型一:倒序相加法例題1.已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,點SKIPIF1<0均在函數(shù)SKIPIF1<0的圖象上,函數(shù)SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)求SKIPIF1<0的值;(3)令SKIPIF1<0,求數(shù)列SKIPIF1<0的前2020項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(1)因為點SKIPIF1<0均在函數(shù)SKIPIF1<0的圖象上,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,適合上式,所以SKIPIF1<0.(2)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.(3)由(1)知SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,①又因為SKIPIF1<0,②因為SKIPIF1<0,所以①SKIPIF1<0②,得SKIPIF1<0,所以SKIPIF1<0.例題2.(2021·全國·高二)已知數(shù)列SKIPIF1<0的前n項和SKIPIF1<0,函數(shù)SKIPIF1<0對任意的SKIPIF1<0都有SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)分別求數(shù)列SKIPIF1<0、SKIPIF1<0的通項公式;【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)存在,SKIPIF1<0.(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0時滿足上式,故SKIPIF1<0(SKIPIF1<0),∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0①∴SKIPIF1<0②∴①+②,得SKIPIF1<0,∴SKIPIF1<0.例題3.(2020·河南大學(xué)附屬中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024幼兒園租賃合同(包括幼兒園特色課程開發(fā)及教學(xué)成果展示)3篇
- 2016-2020年印度尼西亞投資環(huán)境分析及前景預(yù)測報告
- 出差管理制度及出差標(biāo)準(zhǔn)
- 2024年租房付款條款3篇
- 2025年度離婚協(xié)議書定制與婚姻財產(chǎn)分割法律援助合同3篇
- 2024版消防安裝工程施工合同書
- 重慶旅游職業(yè)學(xué)院《病原微生物學(xué)實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度15%股權(quán)轉(zhuǎn)讓與市場推廣服務(wù)合同2篇
- 山西大學(xué)《航空計算機組成與結(jié)構(gòu)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度餐廳智能化改造承包經(jīng)營合同3篇
- 商業(yè)銀行風(fēng)險偏好和限額管理管理辦法
- 《數(shù)學(xué)課程論》課件
- 2024年國家公安部直屬事業(yè)單位招錄人民警察及工作人員696人筆試(高頻重點復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 初中必背古詩文138首
- 車站調(diào)度員(技師)技能鑒定理論考試題庫(含答案)
- 2024年房屋交接確認書
- 【深信服】PT1-AF認證考試復(fù)習(xí)題庫(含答案)
- 反芻動物消化道排泄物原蟲診斷技術(shù)規(guī)范
- 開放系統(tǒng)10861《理工英語(4)》期末機考真題及答案(第102套)
- 2024年國家能源集團招聘筆試參考題庫含答案解析
- GB/T 43824-2024村鎮(zhèn)供水工程技術(shù)規(guī)范
評論
0/150
提交評論