版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題07基本初等函數(shù)【考綱要求】1、掌握二次函數(shù)的圖象與性質(zhì),會求二次函數(shù)的最值(值域)、單調(diào)區(qū)間.2、了解指數(shù)函數(shù)模型的實際背景,理解有理數(shù)指數(shù)冪的含義,了解實數(shù)指數(shù)冪的意義,掌握冪的運算.3、理解指數(shù)函數(shù)的概念及其單調(diào)性,掌握指數(shù)函數(shù)圖象通過的特殊點,知道指數(shù)函數(shù)是重要的函數(shù)模型.4、理解對數(shù)的概念及其運算性質(zhì),知道用換底公式將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);了解對數(shù)在簡化運算中的作用.5、理解對數(shù)函數(shù)的概念及其單調(diào)性,掌握對數(shù)函數(shù)圖象通過的特殊點,知道對數(shù)函數(shù)是重要的函數(shù)模型.一、二次函數(shù)【考點總結(jié)】1.二次函數(shù)(1)二次函數(shù)解析式的三種形式①一般式:f(x)=ax2+bx+c(a≠0).②頂點式:f(x)=a(x-m)2+n(a≠0).③零點式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函數(shù)的圖象和性質(zhì)解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)圖象定義域(-∞,+∞)(-∞,+∞)值域eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(4ac-b2,4a),+∞))eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,\f(4ac-b2,4a)))單調(diào)性在eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上單調(diào)遞減;在eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上單調(diào)遞增在eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上單調(diào)遞增;在eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上單調(diào)遞減對稱性函數(shù)的圖象關(guān)于x=-eq\f(b,2a)對稱二、冪函數(shù)【思維導圖】【考點總結(jié)】1.冪函數(shù)(1)定義:形如y=xα(α∈R)的函數(shù)稱為冪函數(shù),其中底數(shù)x是自變量,α為常數(shù).常見的五類冪函數(shù)為y=x,y=x2,y=x3,y=xeq\s\up6(\f(1,2)),y=x-1.(2)五種冪函數(shù)的圖象(3)性質(zhì)①冪函數(shù)在(0,+∞)上都有定義;②當α>0時,冪函數(shù)的圖象都過點(1,1)和(0,0),且在(0,+∞)上單調(diào)遞增;③當α<0時,冪函數(shù)的圖象都過點(1,1),且在(0,+∞)上單調(diào)遞減.三、指數(shù)與指數(shù)函數(shù)【思維導圖】【考點總結(jié)】1.根式(1)根式的概念①若xn=a,則x叫做a的n次方根,其中n>1且n∈N*.式子eq\r(n,a)叫做根式,這里n叫做根指數(shù),a叫做被開方數(shù).②a的n次方根的表示:xn=a?eq\b\lc\{(\a\vs4\al\co1(x=\r(n,a),當n為奇數(shù)且n∈N*,n>1時,,x=±\r(n,a),當n為偶數(shù)且n∈N*時.))(2)根式的性質(zhì)①(eq\r(n,a))n=a(n∈N*,且n>1);②eq\r(n,an)=eq\b\lc\{(\a\vs4\al\co1(a,n為奇數(shù),,|a|=\b\lc\{(\a\vs4\al\co1(a,a≥0,,-a,a<0,))n為偶數(shù).))2.有理數(shù)指數(shù)冪(1)冪的有關(guān)概念①正分數(shù)指數(shù)冪:aeq\s\up6(\f(m,n))=eq\r(n,am)(a>0,m,n∈N*,且n>1);②負分數(shù)指數(shù)冪:a-eq\s\up6(\f(m,n))=eq\f(1,a\s\up6(\f(m,n)))=eq\f(1,\r(n,am))(a>0,m,n∈N*,且n>1);③0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪無意義.(2)有理數(shù)指數(shù)冪的運算性質(zhì)①aras=ar+s(a>0,r,s∈Q);②(ar)s=ars(a>0,r,s∈Q);③(ab)r=arbr(a>0,b>0,r∈Q).3.指數(shù)函數(shù)的圖象與性質(zhì)y=ax(a>0且a≠1)a>10<a<1圖象定義域R值域(0,+∞)性質(zhì)過定點(0,1)當x>0時,y>1;當x<0時,0<y<1當x>0時,0<y<1;當x<0時,y>1在R上是增函數(shù)在R上是減函數(shù)四、對數(shù)與對數(shù)函數(shù)【考點總結(jié)】1.對數(shù)概念如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底數(shù)N的對數(shù),記作x=logaN,其中a叫做對數(shù)的底數(shù),N叫做真數(shù),logaN叫做對數(shù)式性質(zhì)對數(shù)式與指數(shù)式的互化:ax=N?x=logaN(a>0,且a≠1)loga1=0,logaa=1,alogaN=N(a>0,且a≠1)運算法則loga(M·N)=logaM+logaNa>0,且a≠1,M>0,N>0logaeq\f(M,N)=logaM-logaNlogaMn=nlogaM(n∈R)換底公式logab=eq\f(logcb,logca)(a>0,且a≠1,c>0,且c≠1,b>0)2.對數(shù)函數(shù)的圖象與性質(zhì)a>10<a<1圖象續(xù)表a>10<a<1性質(zhì)定義域:(0,+∞)值域:R過定點(1,0)當x>1時,y>0當0<x<1時,y<0當x>1時,y<0當0<x<1時,y>0在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)3.反函數(shù)指數(shù)函數(shù)y=ax與對數(shù)函數(shù)y=logax互為反函數(shù),它們的圖象關(guān)于直線y=x對稱.【題型匯編】題型一:二次函數(shù)的概念題型二:二次函數(shù)的圖象與性質(zhì)題型三:冪函數(shù)的圖象與性質(zhì)題型四:指數(shù)函數(shù)的圖象與性質(zhì)題型五:對數(shù)函數(shù)的圖象與性質(zhì)【題型講解】題型一:二次函數(shù)的概念一、單選題1.(2022·上海松江·二模)已知正方形SKIPIF1<0的邊長為4,點SKIPIF1<0、SKIPIF1<0分別在邊SKIPIF1<0、SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,若點SKIPIF1<0在正方形SKIPIF1<0的邊上,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·北京·北大附中三模)已知半徑為SKIPIF1<0的圓SKIPIF1<0經(jīng)過點SKIPIF1<0,且與直線SKIPIF1<0相切,則其圓心到直線SKIPIF1<0距離的最小值為(
)A.1 B.SKIPIF1<0 C.2 D.SKIPIF1<03.(2022·江西南昌·三模(理))已知SKIPIF1<0的內(nèi)角SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所對的邊分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0分別為線段SKIPIF1<0,SKIPIF1<0上的動點,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·北京·二模)如圖,已知正方體SKIPIF1<0的棱長為1,則線段SKIPIF1<0上的動點P到直線SKIPIF1<0的距離的最小值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·江西·上饒市第一中學二模(文))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·北京市第十二中學三模)若函數(shù)SKIPIF1<0的值域為R,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.(2022·四川·三模(理))設(shè)函數(shù)SKIPIF1<0的定義城為R,且SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,若存在SKIPIF1<0時,使SKIPIF1<0,則k的最大值為(
).A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<08.(2022·安徽·淮南第一中學一模(理))已知雙曲線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左、右焦點分別是SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,若P是該雙曲線右支上一點,且滿足SKIPIF1<0,則SKIPIF1<0面積的最大值是(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<09.(2022·安徽淮北·一模(理))已知SKIPIF1<0是橢圓SKIPIF1<0的右焦點,點SKIPIF1<0在SKIPIF1<0上,直線SKIPIF1<0與SKIPIF1<0軸交于點SKIPIF1<0,點SKIPIF1<0為C上的動點,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2022·四川巴中·一模(理))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題1.(2022·重慶·一模)已知SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0的最大值為SKIPIF1<0 B.SKIPIF1<0的最大值為SKIPIF1<0C.SKIPIF1<0的最小值為SKIPIF1<0 D.SKIPIF1<0的最大值為SKIPIF1<0題型二:二次函數(shù)的圖象與性質(zhì)一、單選題1.(2022·上海浦東新·二模)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,實數(shù)SKIPIF1<0滿足SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,現(xiàn)有如下兩個結(jié)論:①對于任意的實數(shù)SKIPIF1<0,存在實數(shù)SKIPIF1<0,使得SKIPIF1<0;②存在實數(shù)SKIPIF1<0,對于任意的SKIPIF1<0,都有SKIPIF1<0;則(
)A.①②均正確 B.①②均不正確C.①正確,②不正確 D.①不正確,②正確2.(2022·遼寧·三模)函數(shù)SKIPIF1<0的最大值為(
)A.2 B.3 C.4 D.53.(2022·江西鷹潭·二模(理))已知函數(shù)SKIPIF1<0的極大值點SKIPIF1<0,極小值點SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·北京昌平·二模)已知函數(shù)SKIPIF1<0,則關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·江蘇·華羅庚中學三模)若函數(shù)SKIPIF1<0的定義域和值域的交集為空集,則正數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·寧夏·銀川一中三模(文))已知SKIPIF1<0的最小值為2,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022·北京·一模)已知直線SKIPIF1<0是圓SKIPIF1<0的一條對稱軸,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<08.(2022·山東濟南·二模)若二次函數(shù)SKIPIF1<0,滿足SKIPIF1<0,則下列不等式成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題1.(2022·福建莆田·三模)已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,則下列結(jié)論正確的是(
)A.若SKIPIF1<0有3個不同的零點,則a的取值范圍是SKIPIF1<0B.若SKIPIF1<0有4個不同的零點,則a的取值范圍是SKIPIF1<0C.若SKIPIF1<0有4個不同的零點SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0有4個不同的零點SKIPIF1<0,則SKIPIF1<0的取值范圍是SKIPIF1<0題型三:冪函數(shù)的圖象與性質(zhì)一、單選題1.(2022·山東·德州市教育科學研究院三模)已知對數(shù)函數(shù)SKIPIF1<0的圖像經(jīng)過點SKIPIF1<0與點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·江西·二模(文))已知SKIPIF1<0,則a,b,c的大小關(guān)系是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·四川眉山·三模(文))下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·北京·二模)下列函數(shù)中,與函數(shù)SKIPIF1<0的奇偶性相同,且在SKIPIF1<0上有相同單調(diào)性的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·江西·南昌市八一中學三模(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·廣東·二模)定義在SKIPIF1<0上的下列函數(shù)中,既是奇函數(shù),又是增函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022·內(nèi)蒙古包頭·二模(文))下列函數(shù)中是減函數(shù)的為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.(2022·安徽·蕪湖一中三模(文))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題1.(2022·山東威?!と#┤鬝KIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·山東濱州·二模)若實數(shù)a,b滿足SKIPIF1<0,則下列結(jié)論中正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型四:指數(shù)的圖象與性質(zhì)一、單選題1.(2022·青?!ご笸ɑ刈逋磷遄灾慰h教學研究室三模(文))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則正數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·青?!ご笸ɑ刈逋磷遄灾慰h教學研究室三模(文))若函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.10 C.4 D.23.(2022·山東臨沂·三模)已知SKIPIF1<0,則a,b,c的大小關(guān)系是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·江蘇·華羅庚中學三模)已知SKIPIF1<0,則a,b,c的大小關(guān)系是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·江西師大附中三模(理))設(shè)SKIPIF1<0.則a,b,c大小關(guān)系是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·廣西·貴港市高級中學三模(理))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.(2022·天津市武清區(qū)楊村第一中學二模)設(shè)SKIPIF1<0,則a,b,c的大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2022·山西太原·三模(理))設(shè)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題1.(2022·山東煙臺·三模)二進制是計算中廣泛采用的一種數(shù)制,由18世紀德國數(shù)理哲學家萊布尼茲發(fā)現(xiàn),二進制數(shù)據(jù)是用0和1兩個數(shù)碼來表示的數(shù).現(xiàn)采用類似于二進制數(shù)的方法構(gòu)造數(shù)列:正整數(shù)SKIPIF1<0,其中SKIPIF1<0(SKIPIF1<0),記SKIPIF1<0.如SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的有(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·山東煙臺·三模)某公司通過統(tǒng)計分析發(fā)現(xiàn),工人工作效率SKIPIF1<0與工作年限SKIPIF1<0(SKIPIF1<0),勞累程度SKIPIF1<0(SKIPIF1<0),勞動動機SKIPIF1<0(SKIPIF1<0)相關(guān),并建立了數(shù)學模型SKIPIF1<0.已知甲?乙為該公司的員工,則下列說法正確的有(
)A.甲與乙工作年限相同,且甲比乙工作效率高,勞動動機低,則甲比乙勞累程度強B.甲與乙勞動動機相同,且甲比乙工作效率高,工作年限短,則甲比乙勞累程度弱C.甲與乙勞累程度相同,且甲比乙工作年限長,勞動動機高,則甲比乙工作效率高D.甲與乙勞動動機相同,且甲比乙工作年限長,勞累程度弱,則甲比乙工作效率高題型五:對數(shù)函數(shù)的圖象與性質(zhì)一、單選題1.(2022·浙江·高考真題)已知SKIPIF1<0,則SKIPIF1<0(
)A.25 B.5 C.SKIPIF1<0 D.SKIPIF1<02.(2022·北京·高考真題)在北京冬奧會上,國家速滑館“冰絲帶”使用高效環(huán)保的二氧化碳跨臨界直冷制冰技術(shù),為實現(xiàn)綠色冬奧作出了貢獻.如圖描述了一定條件下二氧化碳所處的狀態(tài)與T和SKIPIF1<0的關(guān)系,其中T表示溫度,單位是K;P表示壓強,單位是SKIPIF1<0.下列結(jié)論中正確的是(
)A.當SKIPIF1<0,SKIPIF1<0時,二氧化碳處于液態(tài)B.當SKIPIF1<0,SKIPIF1<0時,二氧化碳處于氣態(tài)C.當SKIPIF1<0,SKIPIF1<0時,二氧化碳處于超臨界狀態(tài)D.當SKIPIF1<0,SKIPIF1<0時,二氧化碳處于超臨界狀態(tài)3.(2022·全國·高考真題)設(shè)SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·上海青浦·二模)“SKIPIF1<0”成立的一個必要而不充分條件是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·黑龍江·雞西市第四中學三模(理))若兩個函數(shù)的圖象經(jīng)過若干次平移后能夠重合,則稱這兩個函數(shù)為“同形”函數(shù),給出下列三個函數(shù):SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度離婚協(xié)議書起草與跨國婚姻解除服務合同3篇
- 2024年船舶照明安裝協(xié)議3篇
- 2024年食品供應鏈合作合同標準模板一
- 2024版?zhèn)€人借款協(xié)議含第三方擔保條款版B版
- 2025年度影視基地場地租賃及拍攝制作服務協(xié)議3篇
- 2024生物醫(yī)藥研發(fā)過程中數(shù)據(jù)共享協(xié)議
- 2024年金融衍生品期貨交易合同規(guī)范文本3篇
- 2024年虛擬展覽開發(fā)合同3篇
- 2024年綠色金融融資居間服務合同范本3篇
- 2024年集裝箱房屋買賣法律合同書樣本版B版
- 資產(chǎn)評估常用數(shù)據(jù)與參數(shù)手冊
- 分子影像學概論培訓課件
- 小學四年級數(shù)學上冊促銷問題
- 血常規(guī)判讀專業(yè)知識講座培訓課件
- 物業(yè)安全崗位職責
- 國內(nèi)外中學數(shù)學教學改革與發(fā)展
- 六年級上冊語文分層作業(yè)優(yōu)秀設(shè)計案例
- 商品拍攝與素材編輯-課程標準
- 中等職業(yè)學校班主任能力比賽幼兒保育專業(yè)班級建設(shè)方案
- 你來比劃我來猜詞語(超搞笑版)
- 施工總平面布置圖及說明及施工現(xiàn)場平面布置圖
評論
0/150
提交評論