版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
NO.298
MAY
2024
ADBBRIEFS
KEYPOINTS
?Buildingresilientand
responsiblesupplychains
forcriticalmineralsis
strategicallyimportantgiventhetime-boundglobal
goalsoftriplingrenewable
energycapacityanddoublingenergyefficiencyby2030
undertheUnitedArab
EmiratesConsensus(UAEConsensus)adoptedatthe28thConferenceofthe
Parties(COP28).
?Tomeetthegrowingdemandofcleanenergytechnology,
criticalmineralswillhaveto
besustainablysourcedand
processedatunprecedentedscaleandspeedoverthenextfewdecades.
?Fortheresource-rich
countriestoseizeemergingopportunities,criticalmineralproductionandprocessing
mustbeintegratedwith
globalandregionalsupplychainsforcleanenergy
manufacturing.This
requirescreatingbusiness-andinvestment-friendly
environmentstoattractinvestmentandpromotedomesticvalueadditionbeyondmining.
?Regionalcooperationand
engagementbymultilateralorganizationscanhelp
unlockopportunitiesandaidresponsibleandsustainable
environmentalresourcemanagement.
ISBN978-92-9270-690-6(print)
ISBN978-92-9270-691-3(PDF)
ISSN2071-7202(print)
ISSN2218-2675(PDF)
PublicationStockNo.BRF240251-2
DOI:
/10.22617/BRF240251-2
BuildingResilientandResponsibleCriticalMineralsSupplyChains
fortheCleanEnergyTransition
Cyn-YoungPark
Director,RegionalCooperationand
IntegrationandTradeDivisionClimateChangeandSustainable
DevelopmentDepartment
AsianDevelopmentBank
AnnaCassandraMelendez
Consultant,RegionalCooperationandIntegrationandTradeDivision
ClimateChangeandSustainableDevelopmentDepartment
AsianDevelopmentBank
CRITICALMINERALSFORTHECLEANENERGYTRANSITION
Thedramaticshiftfromfossilfuelstocleanenergyhastrainedaspotlightonthevitalroleofmineralsandmineral-dependentsupplychainsintheenergytransition.Comparedwithfossilfuel-basedtechnologies,cleanenergytechnologiesarefarmoremineral-intensive
throughouttheirlifecycles(Figure1).
Aslow-carbontechnologiesrelyheavilyonmineralinputs,demandformineralsrequiredforthecleanenergytransitionisexpectedtorisedramatically.Meetingthisdemandis
ofstrategicimportancetoall.Althoughnostandarddefinitionofacriticalmineralexists,somemineralscanbeconsideredcriticalgiventheirimportanceinaparticularsetting
(inthiscase,theenergytransition),availabilityandabundance,andsubstitutability.
TheInternationalEnergyAgency(IEA)definescriticalmineralsasthosebothessentialtotheenergytransitionandwhosesupplymaybedisruptedbymarketshocksorgeopoliticalevents.TheIEA’sCriticalMineralsDataExplorer(IEA2023a)listsnearly40minerals
essentialforcleanenergytechnologies.
Note:ADBrecognizes“America”astheUnitedStatesand“China”asthePeople’sRepublicofChina.
2
ADBBRIEFSNO.298
Figure1:MineralsUsedinCleanEnergyTechnologiesComparedtoOtherPowerGenerationSources,2021
(kilogramspermegawattcapacity)
Offshorewind
Onshorewind
SolarPV
Nuclear
Coal
Naturalgas
02,0004,0006,0008,00010,00012,00014,000
kg/MW
CopperNickelManganeseCobaltChromiumMolybdenumZincRareearthelements
16,00018,000
SiliconOthers
kg/MW=kilogrampermegawatt,PV=photovoltaic.
Source:InternationalEnergyAgency.2021.
/data-and-statistics/charts/minerals-used-in-clean-energy-technologies-compared-to-
other-power-generation-sources
.
Figure2matchescriticalmineralstoselectedcleanenergytechnologiesinwhichtheyareneeded.
TheWorldBank(2020)hasdevelopedaframeworkforclassifyingcriticalmineralsintodifferentcategoriesofdemandrisk,dependingonprojecteddemandforarangeofcleanenergytechnologies.Theclassificationframeworkhasfourmaincategoriesofcriticalminerals:
(i)High-impactandcross-cuttingminerals:includeminerals,suchasaluminum,thatwillbeusedinawiderangeof
technologiesandfaceasignificantincreaseinproductiontomeettheprojecteddemandinthecleanenergytransition.
(ii)High-impactminerals:includecobalt,graphite,andlithiumwhichareconcentratedinspecifictechnologies,butare
expectedtoexperiencesignificantincreasesinrelativedemand,drivenlargelybyenergystorageneeds.
(iii)Medium-impactminerals:includecertainrareearth
elements(REEs)whichmaynotbeusedinawiderange
oftechnologies,butareessentialforspecifictechnologies.Theseareexpectedtofaceamoderateincreaseindemand.
(iv)Cross-cuttingminerals:includecopperandnickelwhichare
usedacrossawiderangeoftechnologiesandconsideredasfundamentalelementsfortheenergytransition.
Thispolicybriefprovidesanoverviewofstrategicpolicyissuessurroundingcriticalmineralssupplychainsthatwillhavetobeconsideredinplanningsupportforthecleanenergytransition.
Theanalysisfocusesonsixcriticalmineralsfortheenergytransition:
copper,cobalt,graphite,lithium,nickel,andREEs.1Thesemineralsareselectedbasedontheirimportanceforcleanenergytechnologies,
projecteddemand,andvulnerabilitiestosupplyshocks.Copperisanessentialcomponentofwiringinelectricalnetworksandallelectricity-relatedtechnologies,includingpowergrids.Cobalt,graphite,and
lithiumarekeycomponentsofbatteriesforelectricvehicles(EVs)andenergystoragesystems.NickelisnecessaryforEVs,energystorage,
solarandwindenergy,otherlow-emissionspowergeneration,and
hydrogentechnologies.REEsarevitalforpermanentmagnetsused
inEVsandwindturbines(IEA2021,2023a,2023b).Inthefollowingsections,thebriefreviewskeymarkettrendsandoutlooks,assesses
developmentconstraintsandrisks,takesstockofcountryexperiencesandpolicyresponses,andputsforwardpolicyrecommendations.
1TheREEsconsistof15elementsinthelanthanidesgroup,plusscandiumandyttrium.TheREEsneodymium,dysprosium,praseodymium,andterbiumareparticularlycriticalforcleanenergytechnologies(IEA2021).
3
BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition
Figure2:CriticalMineralsforSelectedCleanEnergyTechnologies
GeothermalHydroNuclearBioenergy
ElectricityNetworks
Concentrated
SolarHydrogen
WindPower
Solar
Photovoltaic
Electric
vehiclesa
Steel
CopperAluminum
Nickel
Zinc Dysprosium NeodymiumPraseodymium Silicon Terbium Cobalt Graphite Manganese Silver Cadmium Gallium Iridium Lithium PlatinumTellurium
Uranium
ImportanceLowtonone
●.High
aIncludesenergystorage.
Source:Exhibitfrom“
.%20"
Theraw-materialschallenge:Howthemetalsandminingsectorwillbeatthecoreofenablingtheenergy
transition,”January2022,McKinsey&Company,Copyright(c)2024McKinsey&Company.Allrightsreserved.Reprintedbypermission.
DEMANDANDSUPPLYPROJECTIONSFORCRITICALMINERALS
Availableestimatesoffuturedemandforcriticalmineralsvary
widelyduetodifferencesinthecoveredtechnologiesandminerals,methodologies,andassumptions.Regardlessofthesedifferences,
criticalmineralswillhavetobesourcedandprocessedatanunprecedentedscaleandspeedoverthenextfewdecadestoachievenet-zerotargets.
TheIEAhasdevelopedthreescenariosthatassumedifferentlevelsofambitionandalignmentwiththeParisAgreement:
(i)ThemoderateStatedPoliciesScenario(STEPS)includes
currentpoliciesorpoliciesthatgovernmentsaredeveloping.
(ii)TheAnnouncedPledgesScenario(APS)assumesalllong-termemissionsandenergyaccesspledgesarefullyimplemented
ontime.TheAPSlimitstemperatureriseto1.7°Cabovepreindustriallevelsin2100(witha50%probability).
(iii)TheNetZeroEmissionsby2050Scenario(NZE)isthemostambitiousscenarioofall.Itassumesevenfasterdeploymentofcleanenergytechnologiestolimitglobalwarmingto1.5°C(IEA2023b).2
Table1showstheestimateddemandforcriticalmineralsundereachofthethreescenarios,whileFigure3showsprojectedgrowthindemandrelativeto2022.Overthenext2–3decades,demandfortotalcriticalmineralsisexpectedtodoubleundertheSTEPS,morethantriple
undertheAPS,andmorethanquadrupleundertheambitiousNZE.Demandforrawmineralsisprojectedtocontinuetoincreaseuntil2050,whentheirrecyclingwillhavebecomemorecommonplace.
2SeetheCriticalMineralsDataExplorerMethodologicalNotesformoreinformation:
/assets/e3888347-21a4-4c30-97a7-
7075a3bc48f7/CMDataExplorerMethodology.pdf
.
4
ADBBRIEFSNO.298
Table1:MineralDemandforCleanEnergyTechnologiesbyMineral,2022,2030,2040,and2050
(kiloton/s)
Critical
Mineral
BaseYear
StatedPoliciesScenario
AnnouncedPledgesScenario
NetZeroEmissionsby2050
2022
2030
2040
2050
2030
2040
2050
2030
2040
2050
Copper
5,735.9
9,298.3
9,804.6
10,647.5
11,363.7
15,100.3
15,717.2
15,731.6
20,678.1
17,351.4
Cobalt
68.2
79.4
110.1
145.6
121.6
220.6
295.8
205.4
258.5
290.7
Graphite
587.0
1,697.6
1,957.8
1,322.6
2,604.6
4,056.9
2,980.9
4,449.9
5,353.4
3,468.2
Lithium
73.2
239.8
460.1
490.4
368.0
951.9
1,089.2
628.4
1,187.4
1,178.5
Nickel
456.7
1,381.3
2,046.4
1,867.0
2,131.9
3,765.3
3,882.7
3,452.2
4,344.8
3,764.0
REEs
12.7
29.0
34.6
44.3
40.1
69.7
84.3
65.0
69.1
72.2
Others
1,761.6
2,577.0
3,361.7
4,230.8
3,645.3
5,726.5
7,189.7
6,648.9
7,474.7
7,529.9
Total
8,695.2
15,302.4
17,775.3
18,748.2
20,275.1
29,891.2
31,239.8
31,181.4
39,366.0
33,654.9
REE=rareearthelement.
Source:AsianDevelopmentBankcalculationsusing
statistics/data-tools/critical-minerals-data-explorer
datafromtheInternationalEnergyAgencyCriticalMineralsDataExplorer.
/data-and-
(accessed11October2023).
Figure3:GrowthinDemandforSelectedMineralsfromCleanEnergyTechnologies,
byScenario—2022,2030,2040,and2050
(kiloton/s)
kt
50,000
45,000
40,000
35,000
30,000
25,000
20,000
15,000
10,000
5,000
-
4.5x
39,366
3.9x
33,655
36x
36x
3.4x
.
.
31,240
31,181
29,891
2.3x
22x
20,275
20x
.
18,748
.
1.8x
17,775
15,302
8,695
203020402050203020402050203020402050
2022StatedPoliciesScenarioAnnouncedPledgesScenarioNetZeroEmissionsScenario
CopperCobaltGraphiteLithiumNickelREEsOthersTotalCriticalMinerals
kt=kiloton,REE=rareearthelement.
Note:Textinredshowsincreaseindemandindexedto2022.
Source:AsianDevelopmentBankcalculationsusingdatafromtheInternationalEnergyAgencyCriticalMineralsDataExplorer.
/data-
and-statistics/data-tools/critical-minerals-data-explorer
(accessed11October2023).
Thehugespikeindemandrelativeto2022undertheNZEscenariohighlightstheimportanceofactionoverthenextcoupleofdecades.Toachievenetzeroby2050,demandforlithiumwouldbeexpectedtoincreaserelativeto2022byasmuchas8.6times(8.6x)in2030,
16.2xin2040,and16.1xin2050.Nickelwouldhavethesecond-
largestjumpindemand,growingby7.6xin2030,9.5xin2040,
and8.2xin2050.Graphitecomesthirdwithprojecteddemand
increasingby7.6xin2030,9.1xin2040,and5.9xin2050(Table1).
5
BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition
Figure4showsprojecteddemandforeachcriticalmineralbytechnology
use.ThetrendsunderscoretheimportanceofEVsandbatterystorageaskeydriversofdemandgrowth.Theshifttolow-carbonpower
generationwillalsoincreasemineraldemand.Thesetrajectoriesandriskscouldeasilychangeinthefuture,dependingontechnological
developments,policychanges,andmarketandgeopoliticaldynamics.
Whileavailablereservesofcriticalmineralsarebelievedtobe
sufficienttomeetlong-termdemand(UnitedStatesGeological
Survey2023),shortfallsinafewmineralsareprojectedinthenearto
mediumterm.Figure5showstheIEA’slatestdataontheanticipatedsupply3ofselectedcriticalmineralsby2030andcomparesthese
againstthe2030projectedrequirementsundertheAPSandNZE
scenarios.In2030,cobaltisprojectedtobeinsurplusrelativetothe
APSbutwillfallshortofprojectedrequirementstoachievenetzeroby2050(NZE).Themedium-termanticipatedsupplyofcopper,lithium,andnickelwillfallshortofmeetingprojectedrequirementsunderbothscenarios.ThestarkestshortfallisforlithiumunderNZE(Figure5).
Figure4:MineralDemandforCleanEnergyTechnologiesbyMineralandTechnology,2022and2040
(kiloton/s)
kt
0
Copper
2022
2030
2040
2050
StatedPoliciesScenario
2030
2040
2050
AnnouncedPoliciesScenario
2030
2040
2050
NetZeroEmissionsScenario
ElectricvehiclesElectricitynetworksGridbatterystorage
HydrogentechnologiesSolarPVWind
Otherlow-emissionspowergeneration
Graphite
6,000
5,000
4,000
3,000
2,000
1,000
2022
2030
2040
2050
StatedPoliciesScenario
2030
2040
2050
Announced
PoliciesScenario
2030
2040
2050
NetZero
Emissions
Scenario
ElectricvehiclesElectricitynetworksGridbatterystorage
HydrogentechnologiesSolarPVWind
Low-emissionspowergeneration
kt
2022
2030
2040
2050
2030
2040
2050
2030
2040
2050
300
250
200
150
100
50
0
StatedPolicies
Announced
NetZero
Scenario
PoliciesScenario
EmissionsScenario
Cobalt
350
ElectricvehiclesElectricitynetworksGridbatterystorage
HydrogentechnologiesSolarPVWind
Low-emissionspowergeneration
kt
1,400
1,200
1,000
800
600
400
200
0
2030
2040
2050
2030
2040
2050
2030
2040
2050
2022
StatedPoliciesScenario
Announced
PoliciesScenario
NetZero
EmissionsScenario
Lithium
ElectricvehiclesElectricitynetworksGridbatterystorage
HydrogentechnologiesSolarPVWind
Low-emissionspowergeneration
continuedonnextpage
3Anticipatedsupplytakesintoconsiderationproductionfromannouncedminingprojects.
6
ADBBRIEFSNO.298
Figure4:continued
Figure4:MineralDemandforCleanEnergyTechnologiesbyMineralandTechnology,2022and2040
(kiloton/s)
kt
2022
2030
2040
2050
2030
2040
2050
2030
2040
2050
0
Nickel
5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000
500
StatedPoliciesScenario
Announced
PoliciesScenario
NetZero
Emissions
Scenario
Electricvehicles
SolarPV
GridbatterystorageWind
HydrogentechnologiesOtherlow-emissions
powergeneration
Neodymium(REE)
kt
2022
2030
2040
2050
2030
2040
2050
2030
2040
2050
70
60
50
40
30
20
10
0
StatedPolicies
Announced
NetZero
Scenario
PoliciesScenario
EmissionsScenario
Electricvehicles
SolarPV
GridbatterystorageWind
HydrogentechnologiesOtherlow-emissions
powergeneration
kt=kiloton,PV=photovoltaic,REE=rareearthelement.
Source:AsianDevelopmentBankcalculationsusingdatafromtheInternationalEnergyAgencyCriticalMineralsDataExplorer.
/data-
and-statistics/data-tools/critical-minerals-data-explorer
(accessed11October2023).
Figure5:AnticipatedPrimaryProductionandSupplyRequirementsofSelectedMineralsfor2030intheAnnouncedPolicyScenarioandNetZeroEmissionsScenarios
Copper
Lithium
Nickel
Cobalt
Mt
40
30
20
10
2022
Anticipated
supply
APS
NZE
2030
ktLi
800
600
400
200
2022
Anticipated
supply
APS
NZE
2030
Mt
8
6
4
2
Anticipated
supply
APS
NZE
2022
2030
kt
400
300
200
100
2022
Anticipated
supply
APS
NZE
2030
APS=AnnouncedPolicyScenario,kt=kiloton,Mt=megatonne,NZE=NetZeroEmissionsby2050Scenario.
Source:IEACriticalMineralsMarketReview.2023.
/assets/afc35261-41b2-47d4-86d6-d5d77fc259be/
CriticalMineralsMarketReview2023.pdf
.
7
BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition
RISKSFACINGMINERAL-DEPENDENTCLEANTECHNOLOGYSUPPLYCHAINS
Mineral-dependentcleantechnologysupplychainsarehighly
complex(Figure6).Therelevantsupplychainscancovereverything
fromextractingrawmaterialstoimmediateprocessing,purification
andrefining,componentmanufacturingforcleanenergytechnologies,andrecyclingofmineralwastes.Thedynamicsineachstepofthe
supplychaincandiffergreatlyfromonecleantechnologytoanother.Supplychainsalsoinvolveextensiveglobalnetworksofsupplies,witheachsegmentofthechaintypicallyinvolvingmultipleproducers.
Usinglithiumasanexample,whereasthebiggestsourcesarefoundinLatinAmericaandAustralia,theprocessingandrefiningoflithiumtakesplaceinAsia.Oncerefined,lithiumisusedtomanufactureEVbatteriesinAsia,Europe,andtheUnitedStates(US)(Figure7).
Development
Mining-
Geological
resources
Metallurgy/refining
Oreprocessing
Smelting
andrefining
Endproduct
Manufacturing
Components
products
Figure6:SchematicRepresentationofaMineral-DependentSupplyChain
Exploration
Purification
Production
wastecollection
Preparation–dismantling,crushing,separation
Secondaryrecycling
Primaryrecycling
ProductionwasteProductionwasteEnd-of-life
1collectioncollectionproducts,waste
Semifinished
Source:Ayuketal.2020,citedinInternationalRenewableEnergyAgency(IRENA).2023.GeopoliticsoftheEnergyTransitionCriticalMinerals.AbuDhabi.
/Publications/2023/Jul/Geopolitics-of-the-Energy-Transition-Critical-Materials
.
Figure7:SchematicRepresentationofaBatterySupplyChain
Li
Mine
Refinery
Batterymanufacturer
Recycler
Landfill
(variouslocations)
NiLi
Mn
Co
Ni
Co=cobalt;Li=lithium;Mn=manganese;Ni=nickel.
Source:S.Daran.d.TheLithiumSupplyChain.
/decentralizing-the-lithium-supply-chain
.
8
ADBBRIEFSNO.298
Despitetheircomplexity,mineral-dependentcleantechnology
supplychainsarehighlyconcentratedgeographically(Figure8).Attheupstreamside,afewproducers—mostlydevelopingcountries—arevitalformanycriticalminerals.TheDemocraticRepublicof
Congo(DRC)isthelargestproducerofcobaltandthethird-largestsourceofcopper.ThePeople’sRepublicofChina(PRC)isthe
biggestproducerofgraphiteandREEs,andthethird-biggestsourceoflithium.Indonesiaisamajorproducerofcobalt,copper,and
nickel.ThePhilippinesisamajorproducerofnickel.However,thebulkofextractedmineralsareexportedraw.
Geographicconcentrationisevenhigherintheprocessingstage,
withthePRCaccountingfor68%and73%ofglobalnickelandcobaltrefiningcapacity,and70%and85%ofglobalcathodesandanodes
productioncapacity,respectively(CastilloandPurdy2022).Indeed,
geographicconcentrationisseenthroughoutthesupplychainsof
cleanenergytechnologies(Figure9).Forexample,thePRC,Japan,andtheRepublicofKoreadominatethemidstreamsectionofthebatterymaterialssupplychain.ThePRCandIndiaarealsokeyplayersinwindturbinesandcomponentsalongsidetheUS,Spain,andGermany.
Meanwhile,thedownstreamsegmentisdominatedbyafewmatureplayersinthePRC,theUS,andtheEuropeanUnion(EU).
Figure8:LargestProducersandUsersofSelectedCriticalMineralsintheEnergyTransition
CleantechnologiesMiningProcessingBatterymaterialBatterycell/packEVdeployment
Copper
Chile
Peru
Chile
PRC
ROK
Japan
PRC
US
ROK
PRC
US
EU
PRC
Lithium
Chile
PRC
Chile
Australia
PolysiliconSolarpanelEVinstallation
Nickel
Cobalt
REEs
Indonesia
PRC
Indonesia
PRC
ROK
Germany
PRC
ROK
Canada
Philippines
EU
US
EU
US
PRC
Windinstallation
PRC
DRC
PRC
Windturbineandcomponents
PRC
PRC
PRC
India
US
Spain
Germany
DRC=DemocraticRepublicofCongo,EU=EuropeanUnion,EV=electricvehicle,PRC=People’sRepublicofChina,PV=photovoltaic,REE=rareearthelement,ROK=RepublicofKorea,US=UnitedStates.
Source:InternationalEnergyAgency.2021.TheRoleofCriticalMineralsinCleanEnergyTransitions.Paris.
/reports/the-role-of-critical
-minerals-in-clean-energy-transitions.
Figure9:ShareofTopThreeEconomiesinTotalProductionandProcessingofSelectedCriticalMinerals,2022
Extraction
Processing
Copper
Nickel
Cobalt
Lithium
Graphite
REEs
DRC
IndonesiaPhilippinesPRC
US
RussianFederation
Argentina
Chile
Japan
Mozambique
Peru
Finland
Canada
Zambia
Madagascar
Malaysia
Estonia
Australia
2019top3share
25%50%75%100%
50%
75%
25%
100%
Copper
Nickel
Cobalt
Lithium
Graphite
REEs
DRC=DemocraticRepublicofCongo,PRC=People’sRepublicofChina,US=UnitedStates,REE=rareearthelement.
Source:InternationalEnergyAgency.2023.CriticalMineralsMarketReview.2023.Paris.
/assets/afc35261-41b2-47d4
-86d6-d5d77fc259be/CriticalMineralsMarketReview2023.pdf.
VIE
9
BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition
Tradeflowsalsoreflecttheintricateconnectionsofcriticalmineralssupplychainsaroundtheworld(Figure10).Somedominantplayers,particularlythePRC,playanoutsizedroleinglobalsupplychainsforcriticalmineralsfromupstreamtodownstream.Forexample,the
DRCleadsglobalcobaltexports,with67%ofthismarket.ThePRCisthetopimporter,signifyingitscentralroleincobaltprocessingalongwithotherkeyplayersliketheUSandBelgium.ThePRCisalsothe
largestexporterofgraphite,withan80%shareofglobalexports.
IndustrialnationsincludingFrance,Germany,andAustriaarekey
nodesintheinterconnectedglobalgraphitetrade.Forlithium,the
PRCisthebiggestproducerandexporteroftheprocessedmineral,
withtheUS,theRepublicofKorea,andGermanyasmajorimporters.
IndonesiaistheleadingexporterofnickelwiththePRCasthe
primaryimportdestination.ThePRCisthelargestexporterofREEsandakeynodeforimportingfromothermajorexporters,highlightingitscentralroleinproductionandrefinement.
Miningprojectsandcleanenergytechnologymanufacturing,besides
theiroverrelianceonafewsuppliersandeconomies,tendtohavelongleadtimesandcomewithconsiderablefinancialrisks.Minestakeanaverageof16.5yearstomovefromdiscoverytoproduction(IEA2021).Cleanenergytechnologymanufacturingfacilities
takebetween3and5yearstodevelop,dependingonthetypeoftechnology.
Figure10:TradeNetworksofSelectedCriticalMinerals,2022
(a)Cobalt(HS282200,810520,810530,810590)(b)Graphite(HS250410,250490,380110,
380120,380190,681510,690310,854511,
854519,854520,854590)
USA
BEL
SIN
MOZ
ZAF
HKG
NOR
9.7%4.1%4.5%
16.7%
1.3%
ZMB
ROW
1.3%
3.2%
3.2%
COD
0.5%0.31%
IRE
1.5%
0.6%
1.1%
UKG
0.7%
0.4%
1.5%
0.6%
25.2%
0.3%
0.3%
NET
GER
0.7%0.5%
TAP
0.2%
0.4%
0.3%
JPN
0.3%
0.6%
PRC
FRA
0.2%
1.6%
0.4%0.3%
KOR
SPA
CAN
POL
CAN
PRC
KOR
0.6%
1%
0.2%
BRA
0.1%
0.6%
0.8%
TUR
0.1%
1%
0.5%
MEX
0.6%
0.3%
ITA
0.1%
3.9%
FRA
0.7%
0.2%
0.6%
0.1%
0.7%
USA
0.1%
0.5%4.6%
AUT
0.3%0.4%
○0.1%○7.4%
6.6%45.2%○
HUN
ROW
MAL
8.6%
RUS
6.3%
5.9%
GER
(c)Lithium(HS282520,283691,850650,850760)(d)Nickel(HS75,282540,282735,283324,381511,741122)
2.4%
6.6%
GER
3%
1.1%
0.5%
PRC
KOR
7.3%
0.4%
1%
0.6%
2.9%19.8%
8.7%
0.2%
2%2.6%
5%
NET
JPN
ROW
CHL
3.7%
BEL
MEX
0.2%
FRA
1.4%
1%
0.4%
0.3%
USA
POL
ITA
0.4%
0.6%
CZE
0.7%
0.6%
1.2%
0.1%
0.3%
HUN
1%
UKG
CAN
0.8%1%
3.5%
1%
FRA
MEX
0.3%2.4%
1.3%
1%
NOR
1%
1%
5%
5%
0.7%
0.8%
NET
GER
JPN
0.4%
0.2%
3%
1%
11%
AUT
TAP
0.1%
ROW
0.7%
0.4%
IND
0.02%
INO
3.9%
MAL
PRC
0.2%0.3%
3%0.9%
USA
0.5%
0.5%
KOR
ITA
continuedonnextpage
10
ADBBRIEFSNO.298
4%
17%
Figure10:TradeNetworksofSelectedCriticalMinerals,2022
(e)Rareearthelements(HS280530;284610;284690)
SAUGER
MEX
0.1%0.4%
0.1%
0.6%
ROW
USA
5%
1%
0.8%3%
NET
0.5%
0.02%
1%
PRC
UKG
0.01%
0.1%7%
3%
2%
21%
FRA
1%
0.02%
THA
0.3%
3%
1%3%
KOR
1%1%
MAL
8%
JPN
PHI
2%
1%
VIE
TAP
AUT=Austria;BEL=Belgium;BRA=Brazil;CAN=Canada;CHL=Chile;CZE=CzechRepublic;DRC=DemocraticRepublicofCongo;FRA=France;
GER=Germany;HKG=HongKong,China;HS=harmonizedsystem;HUN=Hungary;IND=India;INO=Indonesia;IRE=Ireland;ITA=Italy;JPN=Japan;KOR=RepublicofKorea;MAL=Malaysia;MEX=Mexico;MOZ=Mozambique;NET=Netherlands;NOR=Norway;PHI=Philippines;POL=Poland;
PRC=People’sRepublicofChina;ROW=restoftheworld;RUS=RussianFederation;SAU=SaudiArabia;SIN=Singapore;SPA=Spain;SRI=SriLanka;TAP=Taipei,China;THA=Thailand;TUR=Türkiye;UKG=UnitedKingdom;USA=UnitedStates;VIE=VietNam;ZAF=SouthAfrica;ZMB=Zambia.
Notes:Thenodesizesrepresenttheeconomy’stotaltrade(exportsplusimports)inacommoditygroup.Linethicknessrepresentsthevalueofflowsbetweeneconomies.Eachlineshowstheshareofexportstothetotalglobalexportsofthecommoditygroup,withonlyexportswithhighvaluesrepresented.Thearrowcolorvariestohighlightflowdirections.HScodesarebasedon
https://oma.on.ca/en/ontario-mining/2022_OMA_Mineral_Profiles.pdf.
Source:AsianDevelopmentBankcalculationsusingdatafromUnitedNations.CommodityTradeDatabase.
(accessed30October2023).
Thepricevolatilityisoftenanotablefeatureofmetalsandminerals.AsillustratedinFigure11,thepricesofcobalt,copper,andnickel
werehighlyvolatilebetween2019and2023.
Highpricevolatilitydiscouragesinvestmentandcreateschallengesforcompaniestoplancleanenergytechnologyprojects.Geographicconcentrationandlongleadtimesforminingdevelopmentarethemainreasonsforthevolatility,butotherfactorsarealsoatplay.
Insufficientdataontheproduction,demand,trade,andinventoriesofcriticalminerals,particularlyforlithium,graphite,andcobalt,
createmarketuncertainty,increasepricevolatility,anddelay
investment(StuermerandWittenstein2023).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新媒體運(yùn)營(yíng)活動(dòng)策劃方案
- 內(nèi)部控制成果培訓(xùn)
- 腹部外科術(shù)后早期活動(dòng)
- 食藥局餐飲監(jiān)管培訓(xùn)
- 數(shù)控車削加工技術(shù) 課件 項(xiàng)目八 內(nèi)孔切削工藝及編程
- 山東省青島第十九中學(xué)2024-2025學(xué)年高一上學(xué)期10月月考地理試題(含答案)
- 河北省保定市唐縣2024-2025學(xué)年一年級(jí)上學(xué)期期中數(shù)學(xué)試題
- 2024-2025學(xué)年黑龍江省哈爾濱市道里區(qū)松南學(xué)校九年級(jí)(上)月考物理試卷(10月份)(含答案)
- 高中語文第2單元良知與悲憫群文閱讀二良知與悲憫課件新人教版必修下冊(cè)
- 高中語文第1單元論語蚜第7課好仁不好學(xué)其蔽也愚課件新人教版選修先秦諸子蚜
- 如何找到公司的潛在客戶
- 倍的認(rèn)識(shí)(教案)-人教版三年級(jí)數(shù)學(xué)上冊(cè)
- 屋面工程技術(shù)規(guī)范G50345-2012
- 常見血管活性藥物的使用及規(guī)范
- 2023年工會(huì)財(cái)務(wù)管理制度范本
- 足球比賽記錄表格
- 《統(tǒng)計(jì)學(xué)-基于Excel》(第3版)課后參考答案 賈俊平
- 杭州郭莊調(diào)研
- 提高學(xué)生數(shù)學(xué)閱讀能力的研究中期報(bào)告
- 游戲與心理健康
- 機(jī)械設(shè)計(jì)圖紙標(biāo)準(zhǔn)化
評(píng)論
0/150
提交評(píng)論