亞開行-為清潔能源轉(zhuǎn)型建立有彈性和負(fù)責(zé)任的關(guān)鍵礦產(chǎn)供應(yīng)鏈(英)_第1頁
亞開行-為清潔能源轉(zhuǎn)型建立有彈性和負(fù)責(zé)任的關(guān)鍵礦產(chǎn)供應(yīng)鏈(英)_第2頁
亞開行-為清潔能源轉(zhuǎn)型建立有彈性和負(fù)責(zé)任的關(guān)鍵礦產(chǎn)供應(yīng)鏈(英)_第3頁
亞開行-為清潔能源轉(zhuǎn)型建立有彈性和負(fù)責(zé)任的關(guān)鍵礦產(chǎn)供應(yīng)鏈(英)_第4頁
亞開行-為清潔能源轉(zhuǎn)型建立有彈性和負(fù)責(zé)任的關(guān)鍵礦產(chǎn)供應(yīng)鏈(英)_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

NO.298

MAY

2024

ADBBRIEFS

KEYPOINTS

?Buildingresilientand

responsiblesupplychains

forcriticalmineralsis

strategicallyimportantgiventhetime-boundglobal

goalsoftriplingrenewable

energycapacityanddoublingenergyefficiencyby2030

undertheUnitedArab

EmiratesConsensus(UAEConsensus)adoptedatthe28thConferenceofthe

Parties(COP28).

?Tomeetthegrowingdemandofcleanenergytechnology,

criticalmineralswillhaveto

besustainablysourcedand

processedatunprecedentedscaleandspeedoverthenextfewdecades.

?Fortheresource-rich

countriestoseizeemergingopportunities,criticalmineralproductionandprocessing

mustbeintegratedwith

globalandregionalsupplychainsforcleanenergy

manufacturing.This

requirescreatingbusiness-andinvestment-friendly

environmentstoattractinvestmentandpromotedomesticvalueadditionbeyondmining.

?Regionalcooperationand

engagementbymultilateralorganizationscanhelp

unlockopportunitiesandaidresponsibleandsustainable

environmentalresourcemanagement.

ISBN978-92-9270-690-6(print)

ISBN978-92-9270-691-3(PDF)

ISSN2071-7202(print)

ISSN2218-2675(PDF)

PublicationStockNo.BRF240251-2

DOI:

/10.22617/BRF240251-2

BuildingResilientandResponsibleCriticalMineralsSupplyChains

fortheCleanEnergyTransition

Cyn-YoungPark

Director,RegionalCooperationand

IntegrationandTradeDivisionClimateChangeandSustainable

DevelopmentDepartment

AsianDevelopmentBank

AnnaCassandraMelendez

Consultant,RegionalCooperationandIntegrationandTradeDivision

ClimateChangeandSustainableDevelopmentDepartment

AsianDevelopmentBank

CRITICALMINERALSFORTHECLEANENERGYTRANSITION

Thedramaticshiftfromfossilfuelstocleanenergyhastrainedaspotlightonthevitalroleofmineralsandmineral-dependentsupplychainsintheenergytransition.Comparedwithfossilfuel-basedtechnologies,cleanenergytechnologiesarefarmoremineral-intensive

throughouttheirlifecycles(Figure1).

Aslow-carbontechnologiesrelyheavilyonmineralinputs,demandformineralsrequiredforthecleanenergytransitionisexpectedtorisedramatically.Meetingthisdemandis

ofstrategicimportancetoall.Althoughnostandarddefinitionofacriticalmineralexists,somemineralscanbeconsideredcriticalgiventheirimportanceinaparticularsetting

(inthiscase,theenergytransition),availabilityandabundance,andsubstitutability.

TheInternationalEnergyAgency(IEA)definescriticalmineralsasthosebothessentialtotheenergytransitionandwhosesupplymaybedisruptedbymarketshocksorgeopoliticalevents.TheIEA’sCriticalMineralsDataExplorer(IEA2023a)listsnearly40minerals

essentialforcleanenergytechnologies.

Note:ADBrecognizes“America”astheUnitedStatesand“China”asthePeople’sRepublicofChina.

2

ADBBRIEFSNO.298

Figure1:MineralsUsedinCleanEnergyTechnologiesComparedtoOtherPowerGenerationSources,2021

(kilogramspermegawattcapacity)

Offshorewind

Onshorewind

SolarPV

Nuclear

Coal

Naturalgas

02,0004,0006,0008,00010,00012,00014,000

kg/MW

CopperNickelManganeseCobaltChromiumMolybdenumZincRareearthelements

16,00018,000

SiliconOthers

kg/MW=kilogrampermegawatt,PV=photovoltaic.

Source:InternationalEnergyAgency.2021.

/data-and-statistics/charts/minerals-used-in-clean-energy-technologies-compared-to-

other-power-generation-sources

.

Figure2matchescriticalmineralstoselectedcleanenergytechnologiesinwhichtheyareneeded.

TheWorldBank(2020)hasdevelopedaframeworkforclassifyingcriticalmineralsintodifferentcategoriesofdemandrisk,dependingonprojecteddemandforarangeofcleanenergytechnologies.Theclassificationframeworkhasfourmaincategoriesofcriticalminerals:

(i)High-impactandcross-cuttingminerals:includeminerals,suchasaluminum,thatwillbeusedinawiderangeof

technologiesandfaceasignificantincreaseinproductiontomeettheprojecteddemandinthecleanenergytransition.

(ii)High-impactminerals:includecobalt,graphite,andlithiumwhichareconcentratedinspecifictechnologies,butare

expectedtoexperiencesignificantincreasesinrelativedemand,drivenlargelybyenergystorageneeds.

(iii)Medium-impactminerals:includecertainrareearth

elements(REEs)whichmaynotbeusedinawiderange

oftechnologies,butareessentialforspecifictechnologies.Theseareexpectedtofaceamoderateincreaseindemand.

(iv)Cross-cuttingminerals:includecopperandnickelwhichare

usedacrossawiderangeoftechnologiesandconsideredasfundamentalelementsfortheenergytransition.

Thispolicybriefprovidesanoverviewofstrategicpolicyissuessurroundingcriticalmineralssupplychainsthatwillhavetobeconsideredinplanningsupportforthecleanenergytransition.

Theanalysisfocusesonsixcriticalmineralsfortheenergytransition:

copper,cobalt,graphite,lithium,nickel,andREEs.1Thesemineralsareselectedbasedontheirimportanceforcleanenergytechnologies,

projecteddemand,andvulnerabilitiestosupplyshocks.Copperisanessentialcomponentofwiringinelectricalnetworksandallelectricity-relatedtechnologies,includingpowergrids.Cobalt,graphite,and

lithiumarekeycomponentsofbatteriesforelectricvehicles(EVs)andenergystoragesystems.NickelisnecessaryforEVs,energystorage,

solarandwindenergy,otherlow-emissionspowergeneration,and

hydrogentechnologies.REEsarevitalforpermanentmagnetsused

inEVsandwindturbines(IEA2021,2023a,2023b).Inthefollowingsections,thebriefreviewskeymarkettrendsandoutlooks,assesses

developmentconstraintsandrisks,takesstockofcountryexperiencesandpolicyresponses,andputsforwardpolicyrecommendations.

1TheREEsconsistof15elementsinthelanthanidesgroup,plusscandiumandyttrium.TheREEsneodymium,dysprosium,praseodymium,andterbiumareparticularlycriticalforcleanenergytechnologies(IEA2021).

3

BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition

Figure2:CriticalMineralsforSelectedCleanEnergyTechnologies

GeothermalHydroNuclearBioenergy

ElectricityNetworks

Concentrated

SolarHydrogen

WindPower

Solar

Photovoltaic

Electric

vehiclesa

Steel

CopperAluminum

Nickel

Zinc Dysprosium NeodymiumPraseodymium Silicon Terbium Cobalt Graphite Manganese Silver Cadmium Gallium Iridium Lithium PlatinumTellurium

Uranium

ImportanceLowtonone

●.High

aIncludesenergystorage.

Source:Exhibitfrom“

.%20"

Theraw-materialschallenge:Howthemetalsandminingsectorwillbeatthecoreofenablingtheenergy

transition,”January2022,McKinsey&Company,Copyright(c)2024McKinsey&Company.Allrightsreserved.Reprintedbypermission.

DEMANDANDSUPPLYPROJECTIONSFORCRITICALMINERALS

Availableestimatesoffuturedemandforcriticalmineralsvary

widelyduetodifferencesinthecoveredtechnologiesandminerals,methodologies,andassumptions.Regardlessofthesedifferences,

criticalmineralswillhavetobesourcedandprocessedatanunprecedentedscaleandspeedoverthenextfewdecadestoachievenet-zerotargets.

TheIEAhasdevelopedthreescenariosthatassumedifferentlevelsofambitionandalignmentwiththeParisAgreement:

(i)ThemoderateStatedPoliciesScenario(STEPS)includes

currentpoliciesorpoliciesthatgovernmentsaredeveloping.

(ii)TheAnnouncedPledgesScenario(APS)assumesalllong-termemissionsandenergyaccesspledgesarefullyimplemented

ontime.TheAPSlimitstemperatureriseto1.7°Cabovepreindustriallevelsin2100(witha50%probability).

(iii)TheNetZeroEmissionsby2050Scenario(NZE)isthemostambitiousscenarioofall.Itassumesevenfasterdeploymentofcleanenergytechnologiestolimitglobalwarmingto1.5°C(IEA2023b).2

Table1showstheestimateddemandforcriticalmineralsundereachofthethreescenarios,whileFigure3showsprojectedgrowthindemandrelativeto2022.Overthenext2–3decades,demandfortotalcriticalmineralsisexpectedtodoubleundertheSTEPS,morethantriple

undertheAPS,andmorethanquadrupleundertheambitiousNZE.Demandforrawmineralsisprojectedtocontinuetoincreaseuntil2050,whentheirrecyclingwillhavebecomemorecommonplace.

2SeetheCriticalMineralsDataExplorerMethodologicalNotesformoreinformation:

/assets/e3888347-21a4-4c30-97a7-

7075a3bc48f7/CMDataExplorerMethodology.pdf

.

4

ADBBRIEFSNO.298

Table1:MineralDemandforCleanEnergyTechnologiesbyMineral,2022,2030,2040,and2050

(kiloton/s)

Critical

Mineral

BaseYear

StatedPoliciesScenario

AnnouncedPledgesScenario

NetZeroEmissionsby2050

2022

2030

2040

2050

2030

2040

2050

2030

2040

2050

Copper

5,735.9

9,298.3

9,804.6

10,647.5

11,363.7

15,100.3

15,717.2

15,731.6

20,678.1

17,351.4

Cobalt

68.2

79.4

110.1

145.6

121.6

220.6

295.8

205.4

258.5

290.7

Graphite

587.0

1,697.6

1,957.8

1,322.6

2,604.6

4,056.9

2,980.9

4,449.9

5,353.4

3,468.2

Lithium

73.2

239.8

460.1

490.4

368.0

951.9

1,089.2

628.4

1,187.4

1,178.5

Nickel

456.7

1,381.3

2,046.4

1,867.0

2,131.9

3,765.3

3,882.7

3,452.2

4,344.8

3,764.0

REEs

12.7

29.0

34.6

44.3

40.1

69.7

84.3

65.0

69.1

72.2

Others

1,761.6

2,577.0

3,361.7

4,230.8

3,645.3

5,726.5

7,189.7

6,648.9

7,474.7

7,529.9

Total

8,695.2

15,302.4

17,775.3

18,748.2

20,275.1

29,891.2

31,239.8

31,181.4

39,366.0

33,654.9

REE=rareearthelement.

Source:AsianDevelopmentBankcalculationsusing

statistics/data-tools/critical-minerals-data-explorer

datafromtheInternationalEnergyAgencyCriticalMineralsDataExplorer.

/data-and-

(accessed11October2023).

Figure3:GrowthinDemandforSelectedMineralsfromCleanEnergyTechnologies,

byScenario—2022,2030,2040,and2050

(kiloton/s)

kt

50,000

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

-

4.5x

39,366

3.9x

33,655

36x

36x

3.4x

.

.

31,240

31,181

29,891

2.3x

22x

20,275

20x

.

18,748

.

1.8x

17,775

15,302

8,695

203020402050203020402050203020402050

2022StatedPoliciesScenarioAnnouncedPledgesScenarioNetZeroEmissionsScenario

CopperCobaltGraphiteLithiumNickelREEsOthersTotalCriticalMinerals

kt=kiloton,REE=rareearthelement.

Note:Textinredshowsincreaseindemandindexedto2022.

Source:AsianDevelopmentBankcalculationsusingdatafromtheInternationalEnergyAgencyCriticalMineralsDataExplorer.

/data-

and-statistics/data-tools/critical-minerals-data-explorer

(accessed11October2023).

Thehugespikeindemandrelativeto2022undertheNZEscenariohighlightstheimportanceofactionoverthenextcoupleofdecades.Toachievenetzeroby2050,demandforlithiumwouldbeexpectedtoincreaserelativeto2022byasmuchas8.6times(8.6x)in2030,

16.2xin2040,and16.1xin2050.Nickelwouldhavethesecond-

largestjumpindemand,growingby7.6xin2030,9.5xin2040,

and8.2xin2050.Graphitecomesthirdwithprojecteddemand

increasingby7.6xin2030,9.1xin2040,and5.9xin2050(Table1).

5

BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition

Figure4showsprojecteddemandforeachcriticalmineralbytechnology

use.ThetrendsunderscoretheimportanceofEVsandbatterystorageaskeydriversofdemandgrowth.Theshifttolow-carbonpower

generationwillalsoincreasemineraldemand.Thesetrajectoriesandriskscouldeasilychangeinthefuture,dependingontechnological

developments,policychanges,andmarketandgeopoliticaldynamics.

Whileavailablereservesofcriticalmineralsarebelievedtobe

sufficienttomeetlong-termdemand(UnitedStatesGeological

Survey2023),shortfallsinafewmineralsareprojectedinthenearto

mediumterm.Figure5showstheIEA’slatestdataontheanticipatedsupply3ofselectedcriticalmineralsby2030andcomparesthese

againstthe2030projectedrequirementsundertheAPSandNZE

scenarios.In2030,cobaltisprojectedtobeinsurplusrelativetothe

APSbutwillfallshortofprojectedrequirementstoachievenetzeroby2050(NZE).Themedium-termanticipatedsupplyofcopper,lithium,andnickelwillfallshortofmeetingprojectedrequirementsunderbothscenarios.ThestarkestshortfallisforlithiumunderNZE(Figure5).

Figure4:MineralDemandforCleanEnergyTechnologiesbyMineralandTechnology,2022and2040

(kiloton/s)

kt

0

Copper

2022

2030

2040

2050

StatedPoliciesScenario

2030

2040

2050

AnnouncedPoliciesScenario

2030

2040

2050

NetZeroEmissionsScenario

ElectricvehiclesElectricitynetworksGridbatterystorage

HydrogentechnologiesSolarPVWind

Otherlow-emissionspowergeneration

Graphite

6,000

5,000

4,000

3,000

2,000

1,000

2022

2030

2040

2050

StatedPoliciesScenario

2030

2040

2050

Announced

PoliciesScenario

2030

2040

2050

NetZero

Emissions

Scenario

ElectricvehiclesElectricitynetworksGridbatterystorage

HydrogentechnologiesSolarPVWind

Low-emissionspowergeneration

kt

2022

2030

2040

2050

2030

2040

2050

2030

2040

2050

300

250

200

150

100

50

0

StatedPolicies

Announced

NetZero

Scenario

PoliciesScenario

EmissionsScenario

Cobalt

350

ElectricvehiclesElectricitynetworksGridbatterystorage

HydrogentechnologiesSolarPVWind

Low-emissionspowergeneration

kt

1,400

1,200

1,000

800

600

400

200

0

2030

2040

2050

2030

2040

2050

2030

2040

2050

2022

StatedPoliciesScenario

Announced

PoliciesScenario

NetZero

EmissionsScenario

Lithium

ElectricvehiclesElectricitynetworksGridbatterystorage

HydrogentechnologiesSolarPVWind

Low-emissionspowergeneration

continuedonnextpage

3Anticipatedsupplytakesintoconsiderationproductionfromannouncedminingprojects.

6

ADBBRIEFSNO.298

Figure4:continued

Figure4:MineralDemandforCleanEnergyTechnologiesbyMineralandTechnology,2022and2040

(kiloton/s)

kt

2022

2030

2040

2050

2030

2040

2050

2030

2040

2050

0

Nickel

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

StatedPoliciesScenario

Announced

PoliciesScenario

NetZero

Emissions

Scenario

Electricvehicles

SolarPV

GridbatterystorageWind

HydrogentechnologiesOtherlow-emissions

powergeneration

Neodymium(REE)

kt

2022

2030

2040

2050

2030

2040

2050

2030

2040

2050

70

60

50

40

30

20

10

0

StatedPolicies

Announced

NetZero

Scenario

PoliciesScenario

EmissionsScenario

Electricvehicles

SolarPV

GridbatterystorageWind

HydrogentechnologiesOtherlow-emissions

powergeneration

kt=kiloton,PV=photovoltaic,REE=rareearthelement.

Source:AsianDevelopmentBankcalculationsusingdatafromtheInternationalEnergyAgencyCriticalMineralsDataExplorer.

/data-

and-statistics/data-tools/critical-minerals-data-explorer

(accessed11October2023).

Figure5:AnticipatedPrimaryProductionandSupplyRequirementsofSelectedMineralsfor2030intheAnnouncedPolicyScenarioandNetZeroEmissionsScenarios

Copper

Lithium

Nickel

Cobalt

Mt

40

30

20

10

2022

Anticipated

supply

APS

NZE

2030

ktLi

800

600

400

200

2022

Anticipated

supply

APS

NZE

2030

Mt

8

6

4

2

Anticipated

supply

APS

NZE

2022

2030

kt

400

300

200

100

2022

Anticipated

supply

APS

NZE

2030

APS=AnnouncedPolicyScenario,kt=kiloton,Mt=megatonne,NZE=NetZeroEmissionsby2050Scenario.

Source:IEACriticalMineralsMarketReview.2023.

/assets/afc35261-41b2-47d4-86d6-d5d77fc259be/

CriticalMineralsMarketReview2023.pdf

.

7

BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition

RISKSFACINGMINERAL-DEPENDENTCLEANTECHNOLOGYSUPPLYCHAINS

Mineral-dependentcleantechnologysupplychainsarehighly

complex(Figure6).Therelevantsupplychainscancovereverything

fromextractingrawmaterialstoimmediateprocessing,purification

andrefining,componentmanufacturingforcleanenergytechnologies,andrecyclingofmineralwastes.Thedynamicsineachstepofthe

supplychaincandiffergreatlyfromonecleantechnologytoanother.Supplychainsalsoinvolveextensiveglobalnetworksofsupplies,witheachsegmentofthechaintypicallyinvolvingmultipleproducers.

Usinglithiumasanexample,whereasthebiggestsourcesarefoundinLatinAmericaandAustralia,theprocessingandrefiningoflithiumtakesplaceinAsia.Oncerefined,lithiumisusedtomanufactureEVbatteriesinAsia,Europe,andtheUnitedStates(US)(Figure7).

Development

Mining-

Geological

resources

Metallurgy/refining

Oreprocessing

Smelting

andrefining

Endproduct

Manufacturing

Components

products

Figure6:SchematicRepresentationofaMineral-DependentSupplyChain

Exploration

Purification

Production

wastecollection

Preparation–dismantling,crushing,separation

Secondaryrecycling

Primaryrecycling

ProductionwasteProductionwasteEnd-of-life

1collectioncollectionproducts,waste

Semifinished

Source:Ayuketal.2020,citedinInternationalRenewableEnergyAgency(IRENA).2023.GeopoliticsoftheEnergyTransitionCriticalMinerals.AbuDhabi.

/Publications/2023/Jul/Geopolitics-of-the-Energy-Transition-Critical-Materials

.

Figure7:SchematicRepresentationofaBatterySupplyChain

Li

Mine

Refinery

Batterymanufacturer

Recycler

Landfill

(variouslocations)

NiLi

Mn

Co

Ni

Co=cobalt;Li=lithium;Mn=manganese;Ni=nickel.

Source:S.Daran.d.TheLithiumSupplyChain.

/decentralizing-the-lithium-supply-chain

.

8

ADBBRIEFSNO.298

Despitetheircomplexity,mineral-dependentcleantechnology

supplychainsarehighlyconcentratedgeographically(Figure8).Attheupstreamside,afewproducers—mostlydevelopingcountries—arevitalformanycriticalminerals.TheDemocraticRepublicof

Congo(DRC)isthelargestproducerofcobaltandthethird-largestsourceofcopper.ThePeople’sRepublicofChina(PRC)isthe

biggestproducerofgraphiteandREEs,andthethird-biggestsourceoflithium.Indonesiaisamajorproducerofcobalt,copper,and

nickel.ThePhilippinesisamajorproducerofnickel.However,thebulkofextractedmineralsareexportedraw.

Geographicconcentrationisevenhigherintheprocessingstage,

withthePRCaccountingfor68%and73%ofglobalnickelandcobaltrefiningcapacity,and70%and85%ofglobalcathodesandanodes

productioncapacity,respectively(CastilloandPurdy2022).Indeed,

geographicconcentrationisseenthroughoutthesupplychainsof

cleanenergytechnologies(Figure9).Forexample,thePRC,Japan,andtheRepublicofKoreadominatethemidstreamsectionofthebatterymaterialssupplychain.ThePRCandIndiaarealsokeyplayersinwindturbinesandcomponentsalongsidetheUS,Spain,andGermany.

Meanwhile,thedownstreamsegmentisdominatedbyafewmatureplayersinthePRC,theUS,andtheEuropeanUnion(EU).

Figure8:LargestProducersandUsersofSelectedCriticalMineralsintheEnergyTransition

CleantechnologiesMiningProcessingBatterymaterialBatterycell/packEVdeployment

Copper

Chile

Peru

Chile

PRC

ROK

Japan

PRC

US

ROK

PRC

US

EU

PRC

Lithium

Chile

PRC

Chile

Australia

PolysiliconSolarpanelEVinstallation

Nickel

Cobalt

REEs

Indonesia

PRC

Indonesia

PRC

ROK

Germany

PRC

ROK

Canada

Philippines

EU

US

EU

US

PRC

Windinstallation

PRC

DRC

PRC

Windturbineandcomponents

PRC

PRC

PRC

India

US

Spain

Germany

DRC=DemocraticRepublicofCongo,EU=EuropeanUnion,EV=electricvehicle,PRC=People’sRepublicofChina,PV=photovoltaic,REE=rareearthelement,ROK=RepublicofKorea,US=UnitedStates.

Source:InternationalEnergyAgency.2021.TheRoleofCriticalMineralsinCleanEnergyTransitions.Paris.

/reports/the-role-of-critical

-minerals-in-clean-energy-transitions.

Figure9:ShareofTopThreeEconomiesinTotalProductionandProcessingofSelectedCriticalMinerals,2022

Extraction

Processing

Copper

Nickel

Cobalt

Lithium

Graphite

REEs

DRC

IndonesiaPhilippinesPRC

US

RussianFederation

Argentina

Chile

Japan

Mozambique

Peru

Finland

Canada

Zambia

Madagascar

Malaysia

Estonia

Australia

2019top3share

25%50%75%100%

50%

75%

25%

100%

Copper

Nickel

Cobalt

Lithium

Graphite

REEs

DRC=DemocraticRepublicofCongo,PRC=People’sRepublicofChina,US=UnitedStates,REE=rareearthelement.

Source:InternationalEnergyAgency.2023.CriticalMineralsMarketReview.2023.Paris.

/assets/afc35261-41b2-47d4

-86d6-d5d77fc259be/CriticalMineralsMarketReview2023.pdf.

VIE

9

BuildingResilientandResponsibleCriticalMineralsSupplyChainsfortheCleanEnergyTransition

Tradeflowsalsoreflecttheintricateconnectionsofcriticalmineralssupplychainsaroundtheworld(Figure10).Somedominantplayers,particularlythePRC,playanoutsizedroleinglobalsupplychainsforcriticalmineralsfromupstreamtodownstream.Forexample,the

DRCleadsglobalcobaltexports,with67%ofthismarket.ThePRCisthetopimporter,signifyingitscentralroleincobaltprocessingalongwithotherkeyplayersliketheUSandBelgium.ThePRCisalsothe

largestexporterofgraphite,withan80%shareofglobalexports.

IndustrialnationsincludingFrance,Germany,andAustriaarekey

nodesintheinterconnectedglobalgraphitetrade.Forlithium,the

PRCisthebiggestproducerandexporteroftheprocessedmineral,

withtheUS,theRepublicofKorea,andGermanyasmajorimporters.

IndonesiaistheleadingexporterofnickelwiththePRCasthe

primaryimportdestination.ThePRCisthelargestexporterofREEsandakeynodeforimportingfromothermajorexporters,highlightingitscentralroleinproductionandrefinement.

Miningprojectsandcleanenergytechnologymanufacturing,besides

theiroverrelianceonafewsuppliersandeconomies,tendtohavelongleadtimesandcomewithconsiderablefinancialrisks.Minestakeanaverageof16.5yearstomovefromdiscoverytoproduction(IEA2021).Cleanenergytechnologymanufacturingfacilities

takebetween3and5yearstodevelop,dependingonthetypeoftechnology.

Figure10:TradeNetworksofSelectedCriticalMinerals,2022

(a)Cobalt(HS282200,810520,810530,810590)(b)Graphite(HS250410,250490,380110,

380120,380190,681510,690310,854511,

854519,854520,854590)

USA

BEL

SIN

MOZ

ZAF

HKG

NOR

9.7%4.1%4.5%

16.7%

1.3%

ZMB

ROW

1.3%

3.2%

3.2%

COD

0.5%0.31%

IRE

1.5%

0.6%

1.1%

UKG

0.7%

0.4%

1.5%

0.6%

25.2%

0.3%

0.3%

NET

GER

0.7%0.5%

TAP

0.2%

0.4%

0.3%

JPN

0.3%

0.6%

PRC

FRA

0.2%

1.6%

0.4%0.3%

KOR

SPA

CAN

POL

CAN

PRC

KOR

0.6%

1%

0.2%

BRA

0.1%

0.6%

0.8%

TUR

0.1%

1%

0.5%

MEX

0.6%

0.3%

ITA

0.1%

3.9%

FRA

0.7%

0.2%

0.6%

0.1%

0.7%

USA

0.1%

0.5%4.6%

AUT

0.3%0.4%

○0.1%○7.4%

6.6%45.2%○

HUN

ROW

MAL

8.6%

RUS

6.3%

5.9%

GER

(c)Lithium(HS282520,283691,850650,850760)(d)Nickel(HS75,282540,282735,283324,381511,741122)

2.4%

6.6%

GER

3%

1.1%

0.5%

PRC

KOR

7.3%

0.4%

1%

0.6%

2.9%19.8%

8.7%

0.2%

2%2.6%

5%

NET

JPN

ROW

CHL

3.7%

BEL

MEX

0.2%

FRA

1.4%

1%

0.4%

0.3%

USA

POL

ITA

0.4%

0.6%

CZE

0.7%

0.6%

1.2%

0.1%

0.3%

HUN

1%

UKG

CAN

0.8%1%

3.5%

1%

FRA

MEX

0.3%2.4%

1.3%

1%

NOR

1%

1%

5%

5%

0.7%

0.8%

NET

GER

JPN

0.4%

0.2%

3%

1%

11%

AUT

TAP

0.1%

ROW

0.7%

0.4%

IND

0.02%

INO

3.9%

MAL

PRC

0.2%0.3%

3%0.9%

USA

0.5%

0.5%

KOR

ITA

continuedonnextpage

10

ADBBRIEFSNO.298

4%

17%

Figure10:TradeNetworksofSelectedCriticalMinerals,2022

(e)Rareearthelements(HS280530;284610;284690)

SAUGER

MEX

0.1%0.4%

0.1%

0.6%

ROW

USA

5%

1%

0.8%3%

NET

0.5%

0.02%

1%

PRC

UKG

0.01%

0.1%7%

3%

2%

21%

FRA

1%

0.02%

THA

0.3%

3%

1%3%

KOR

1%1%

MAL

8%

JPN

PHI

2%

1%

VIE

TAP

AUT=Austria;BEL=Belgium;BRA=Brazil;CAN=Canada;CHL=Chile;CZE=CzechRepublic;DRC=DemocraticRepublicofCongo;FRA=France;

GER=Germany;HKG=HongKong,China;HS=harmonizedsystem;HUN=Hungary;IND=India;INO=Indonesia;IRE=Ireland;ITA=Italy;JPN=Japan;KOR=RepublicofKorea;MAL=Malaysia;MEX=Mexico;MOZ=Mozambique;NET=Netherlands;NOR=Norway;PHI=Philippines;POL=Poland;

PRC=People’sRepublicofChina;ROW=restoftheworld;RUS=RussianFederation;SAU=SaudiArabia;SIN=Singapore;SPA=Spain;SRI=SriLanka;TAP=Taipei,China;THA=Thailand;TUR=Türkiye;UKG=UnitedKingdom;USA=UnitedStates;VIE=VietNam;ZAF=SouthAfrica;ZMB=Zambia.

Notes:Thenodesizesrepresenttheeconomy’stotaltrade(exportsplusimports)inacommoditygroup.Linethicknessrepresentsthevalueofflowsbetweeneconomies.Eachlineshowstheshareofexportstothetotalglobalexportsofthecommoditygroup,withonlyexportswithhighvaluesrepresented.Thearrowcolorvariestohighlightflowdirections.HScodesarebasedon

https://oma.on.ca/en/ontario-mining/2022_OMA_Mineral_Profiles.pdf.

Source:AsianDevelopmentBankcalculationsusingdatafromUnitedNations.CommodityTradeDatabase.

(accessed30October2023).

Thepricevolatilityisoftenanotablefeatureofmetalsandminerals.AsillustratedinFigure11,thepricesofcobalt,copper,andnickel

werehighlyvolatilebetween2019and2023.

Highpricevolatilitydiscouragesinvestmentandcreateschallengesforcompaniestoplancleanenergytechnologyprojects.Geographicconcentrationandlongleadtimesforminingdevelopmentarethemainreasonsforthevolatility,butotherfactorsarealsoatplay.

Insufficientdataontheproduction,demand,trade,andinventoriesofcriticalminerals,particularlyforlithium,graphite,andcobalt,

createmarketuncertainty,increasepricevolatility,anddelay

investment(StuermerandWittenstein2023).

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論