機(jī)械專業(yè)外文翻譯(中英文翻譯)_第1頁
機(jī)械專業(yè)外文翻譯(中英文翻譯)_第2頁
機(jī)械專業(yè)外文翻譯(中英文翻譯)_第3頁
機(jī)械專業(yè)外文翻譯(中英文翻譯)_第4頁
機(jī)械專業(yè)外文翻譯(中英文翻譯)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

外文翻譯英文原文BeltConveyingSystemsDevelopmentofdrivingsystemAmongthemethodsofmaterialconveyingemployed,beltconveyorsplayaveryimportantpartinthereliablecarryingofmaterialoverlongdistancesatcompetitivecost.Conveyorsystemshavebecomelargerandmorecomplexanddrivesystemshavealsobeengoingthroughaprocessofevolutionandwillcontinuetodoso.Nowadays,biggerbeltsrequiremorepowerandhavebroughttheneedforlargerindividualdrivesaswellasmultipledrivessuchas3drivesof750kWforonebelt(thisisthecasefortheconveyordrivesinChengzhuangMine).Theabilitytocontroldriveaccelerationtorqueiscriticaltobeltconveyors’performance.Anefficientdrivesystemshouldbeabletoprovidesmooth,softstartswhilemaintainingbelttensionswithinthespecifiedsafelimits.Forloadsharingonmultipledrives.torqueandspeedcontrolarealsoimportantconsiderationsinthedrivesystem’sdesign.Duetotheadvancesinconveyordrivecontroltechnology,atpresentmanymorereliable.Cost-effectiveandperformance-drivenconveyordrivesystemscoveringawiderangeofpowerareavailableforcustomers’choices[1].1Analysisonconveyordrivetechnologies1.1DirectdrivesFull-voltagestarters.Withafull-voltagestarterdesign,theconveyorheadshaftisdirect-coupledtothemotorthroughthegeardrive.Directfull-voltagestartersareadequateforrelativelylow-power,simple-profileconveyors.Withdirectfu11-voltagestarters.nocontrolisprovidedforvariousconveyorloadsand.dependingontheratiobetweenfu11-andno-1oadpowerrequirements,emptystartingtimescanbethreeorfourtimesfasterthanfullload.Themaintenance-freestartingsystemissimple,low-costandveryreliable.However,theycannotcontrolstartingtorqueandmaximumstalltorque;therefore.theyarelimitedtothelow-power,simple-profileconveyorbeltdrives.Reduced-voltagestarters.Asconveyorpowerrequirementsincrease,controllingtheappliedmotortorqueduringtheaccelerationperiodbecomesincreasinglyimportant.Becausemotortorque1safunctionofvoltage,motorvoltagemustbecontrolled.Thiscanbeachievedthroughreduced-voltagestartersbyemployingasiliconcontrolledrectifier(SCR).AcommonstartingmethodwithSCRreduced-voltagestartersistoapplylowvoltageinitiallytotakeupconveyorbeltslack.a(chǎn)ndthentoapplyatimedlinearrampuptofullvoltageandbeltspeed.However,thisstartingmethodwillnotproduceconstantconveyorbeltacceleration.Whenaccelerationiscomplete.theSCRs,whichcontroltheappliedvoltagetotheelectricmotor.a(chǎn)relockedinfullconduction,providingfu11-linevoltagetothemotor.Motorswithhighertorqueandpull—uptorque,canprovidebetterstartingtorquewhencombinedwiththeSCRstarters,whichareavailableinsizesupto750KW.Woundrotorinductionmotors.WoundrotorinductionmotorsareconnecteddirectlytothedrivesystemreducerandareamodifiedconfigurationofastandardACinductionmotor.Byinsertingresistanceinserieswiththemotor’srotorwindings.themodifiedmotorcontrolsystemcontrolsmotortorque.Forconveyorstarting,resistanceisplacedinserieswiththerotorforlowinitialtorque.Astheconveyoraccelerates,theresistanceisreducedslowlytomaintainaconstantaccelerationtorque.Onmultiple-drivesystems.a(chǎn)nexternalslipresistormaybeleftinserieswiththerotorwindingstoaidinloadsharing.Themotorsystemshavearelativelysimpledesign.However,thecontrolsystemsforthesecanbehighlycomplex,becausetheyarebasedoncomputercontroloftheresistanceswitching.Today,themajorityofcontrolsystemsarecustomdesignedtomeetaconveyorsystem’sparticularspecifications.Woundrotormotorsareappropriateforsystemsrequiringmorethan400kW.DCmotor.DCmotors.a(chǎn)vailablefromafractionofthousandsofkW,aredesignedtodeliverconstanttorquebelowbasespeedandconstantkWabovebasespeedtothemaximumallowablerevolutionsperminute(r/min).withthemajorityofconveyordrives,aDCshuntwoundmotorisused.Whereinthemotor’srotatingarmatureisconnectedexternally.ThemostcommontechnologyforcontrollingDCdrivesisaSCRdevice.whichallowsforcontinualvariable-speedoperation.TheDCdrivesystemismechanicallysimple,butcanincludecomplexcustom-designedelectronicstomonitorandcontrolthecompletesystem.Thissystemoptionisexpensiveincomparisontoothersoft-startsystems.butitisareliable,cost-effectivedriveinapplicationsinwhichtorque,1oadsharingandvariablespeedareprimaryconsiderations.DCmotorsgenerallyareusedwithhigher-powerconveyors,includingcomplexprofileconveyorswithmultiple-drivesystems,boostertrippersystemsneedingbelttensioncontrolandconveyorsrequiringawidevariable-speedrange.1.2HydrokineticcouplingHydrokineticcouplings,commonlyreferredtoasfluidcouplings.a(chǎn)recomposedofthreebasicelements;thedrivenimpeller,whichactsasacentrifugalpump;thedrivinghydraulicturbineknownastherunnerandacasingthatenclosesthetwopowercomponents.Hydraulicfluidispumpedfromthedrivenimpellertothedrivingrunner,producingtorqueatthedrivenshaft.Becausecirculatinghydraulicfluidproducesthetorqueandspeed,nomechanicalconnectionisrequiredbetweenthedrivinganddrivenshafts.Thepowerproducedbythiscouplingisbasedonthecirculatedfluid’samountanddensityandthetorqueinproportiontoinputspeed.Becausethepumpingactionwithinthefluidcouplingdependsoncentrifugalforces.theoutputspeedislessthantheinputspeed.Referredtoasslip.thisnormallyisbetweenl%and3%.BasichydrokineticcouplingsareavailableinconfigurationsfromfractionaltoseveralthousandkW.Fixed-fillfluidcouplings.Fixed-fillfluidcouplingsarethemostcommonlyusedsoft-startdevicesforconveyorswithsimplerbeltprofilesandlimitedconvex/concavesections.Theyarerelativelysimple,1ow-cost,reliable,maintenancefreedevicesthatprovideexcellentsoftstartingresultstothemajorityofbeltconveyorsinusetoday.Variable-filldraincouplings.Drainable-fluidcouplingsworkonthesameprincipleasfixed-fillcouplings.Thecoupling’simpellersaremountedontheACmotorandtherunnersonthedrivenreducerhigh-speedshaft.Housingmountedtothedrivebaseenclosestheworkingcircuit.Thecoupling’srotatingcasingcontainsbleed-offorificesthatcontinuallyallowfluidtoexittheworkingcircuitintoaseparatehydraulicreservoir.Oilfromthereservoirispumpedthroughaheatexchangertoasolenoid-operatedhydraulicvalvethatcontrolsthefillingofthefluidcoupling.Tocontrolthestartingtorqueofasingle-driveconveyorsystem,theACmotorcurrentmustbemonitoredtoprovidefeedbacktothesolenoidcontrolvalve.Variablefilldraincouplingsareusedinmediumtohigh-kWconveyorsystemsandareavailableinsizesuptothousandsofkW.Thedrivescanbemechanicallycomplexanddependingonthecontrolparameters.thesystemcanbeelectronicallyintricate.Thedrivesystemcostismediumtohigh,dependinguponsizespecified.Hydrokineticscoopcontroldrive.Thescoopcontrolfluidcouplingconsistsofthethreestandardfluidcouplingcomponents:adrivenimpeller,adrivingrunnerandacasingthatenclosestheworkingcircuit.Thecasingisfittedwithfixedorificesthatbleedapredeterminedamountoffluidintoareservoir.Whenthescooptubeisfullyextendedintothereservoir,thecouplingisl00percentfilled.Thescooptube,extendingoutsidethefluidcoupling,ispositionedusinganelectricactuatortoengagethetubefromthefullyretractedtothefullyengagedposition.Thiscontrolprovidesreasonablysmoothaccelerationrates.tobutthecomputer-basedcontrolsystemisverycomplex.Scoopcontrolcouplingsareappliedonconveyorsrequiringsingleormultipledrivesfroml50kWto750kW.1.3Variable-frequencycontrol(VFC)Variablefrequencycontrolisalsooneofthedirectdrivemethods.Theemphasizingdiscussionaboutithereisbecausethatithassouniquecharacteristicandsogoodperformancecomparedwithotherdrivingmethodsforbeltconveyor.VFCdevicesProvidevariablefrequencyandvoltagetotheinductionmotor,resultinginanexcellentstartingtorqueandaccelerationrateforbeltconveyordrives.VFCdrives.a(chǎn)vailablefromfractionaltoseveralthousand(kW),areelectroniccontrollersthatrectifyAClinepowertoDCand,throughaninverter,convertDCbacktoACwithfrequencyandvoltagecontro1.VFCdrivesadoptvectorcontrolordirecttorquecontrol(DTC)technology,andcanadoptdifferentoperatingspeedsaccordingtodifferentloads.VFCdrivescanmakestartingorstallingaccordingtoanygivenS-curves.realizingtheautomatictrackforstartingorstallingcurves.VFCdrivesprovideexcellentspeedandtorquecontrolforstartingconveyorbelts.a(chǎn)ndcanalsobedesignedtoprovideloadsharingformultipledrives.easilyVFCcontrollersarefrequentlyinstalledonlower-poweredconveyordrives,butwhenusedattherangeofmedium-highvoltageinthepast.thestructureofVFCcontrollersbecomesverycomplicatedduetothelimitationofvoltageratingofpowersemiconductordevices,thecombinationofmedium-highvoltagedrivesandvariablespeedisoftensolvedwithlow-voltageinvertersusingstep-uptransformerattheoutput,orwithmultiplelow-voltageinvertersconnectedinseries.Three-levelvoltage-fedPWMconvertersystemsarerecentlyshowingincreasingpopularityformulti-megawattindustrialdriveapplicationsbecauseofeasyvoltagesharingbetweentheseriesdevicesandimprovedharmonicqualityattheoutputcomparedtotwo-levelconvertersystemsWithsimpleseriesconnectionofdevices.ThiskindofVFCsystemwiththree750kW/2.3kVinvertershasbeensuccessfullyinstalledinChengZhuangMineforone2.7-kmlongbeltconveyordrivingsysteminfollowingtheprincipleofthree-levelinverterwillbediscussedindetail.2Neutralpointclamped(NPC)three-levelinverterusingIGBTsThree-levelvoltage-fedinvertershaverecentlybecomemoreandmorepopularforhigherpowerdriveapplicationsbecauseoftheireasyvoltagesharingfeatures.1owerdv/dtperswitchingforeachofthedevices,andsuperiorharmonicqualityattheoutput.TheavailabilityofHV-IGBTshasledtothedesignofanewrangeofmedium-highvoltageinverterusingthree-levelNPCtopology.Thiskindofinvertercanrealizeawholerangewithavoltageratingfrom2.3kVto4.16kVSeriesconnectionofHV-IGBTmodulesisusedinthe3.3kVand4.16kVdevices.The2.3kVinvertersneedonlyoneHV-IGBTperswitch[2,3].2.1PowersectionTomeetthedemandsformediumvoltageapplications.a(chǎn)three-levelneutralpointclampedinverterrealizesthepowersection.Incomparisontoatwo-levelinverter.theNPCinverteroffersthebenefitthatthreevoltagelevelscanbesuppliedtotheoutputterminals,soforthesameoutputcurrentquality,only1/4oftheswitchingfrequencyisnecessary.MoreoverthevoltageratingsoftheswitchesinNPCinvertertopologywillbereducedto1/2.a(chǎn)ndtheadditionaltransientvoltagestressonthemotorcanalsobereducedto1/2comparedtothatofatwo-levelinverter.Theswitchingstatesofathree-levelinverteraresummarizedinTable1.U.VandWdenoteeachofthethreephasesrespectively;PNandOarethedcbuspoints.ThephaseU,forexample,isinstateP(positivebusvoltage)whentheswitchesS1uandS2uareclosed,whereasitisinstateN(negativebusvoltage)whentheswitchesS3uandS4uareclosed.Atneutralpointclamping,thephaseisinOstatewheneitherS2uorS3uconductsdependingonpositiveornegativephasecurrentpolarity,respectively.Forneutralpointvoltagebalancing,theaveragecurrentinjectedatOshouldbezero.2.2LinesideconverterForstandardapplications.a(chǎn)l2-pulsedioderectifierfeedsthedividedDC-linkcapacitor.Thistopologyintroduceslowharmonicsonthelineside.Forevenhigherrequirementsa24-pulsedioderectifiercanbeusedasaninputconverter.Formoreadvancedapplicationswhereregenerationcapabilityisnecessary,anactivefront.endconvertercanreplacethedioderectifier,usingthesamestructureastheinverter.2.3InvertercontrolMotorContro1.Motorcontrolofinductionmachinesisrealizedbyusingarotorflux.orientedvectorcontroller.Fig.2showstheblockdiagramofindirectvectorcontrolleddrivethatincorporatesbothconstanttorqueandhighspeedfield-weakeningregionswherethePWMmodulatorwasused.Inthisfigure,thecommandfluxisgeneratedasfunctionofspeed.Thefeedbackspeedisaddedwiththefeedforwardslipcommandsignal.theresultingfrequencysignalisintegratedandthentheunitvectorsignals(cosandsin)aregenerated.ThevectorrotatorgeneratesthevoltageandanglecommandsforthePWMasshown.PWMModulator.ThedemandedvoltagevectorisgeneratedusinganelaboratePWMmodulator.Themodulatorextendstheconceptsofspace-vectormodulationtothethree-levelinverter.Theoperationcanbeexplainedbystartingfromaregularlysampledsine-trianglecomparisonfromtwo-levelinverter.Insteadofusingonesetofreferencewaveformsandonetriangledefiningtheswitchingfrequency,thethree-levelmodulatorusestwosetsofreferencewaveformsUr1andUr2andjustonetriangle.Thus,eachswitchingtransitionisusedinanoptimalwaysothatseveralobjectivesarereachedatthesametime.Verylowharmonicsaregenerated.Theswitchingfrequencyislowandthusswitchinglossesareminimized.Asinatwo-levelinverter,azero-sequencecomponentcanbeaddedtoeachsetofreferencewaveformsinordertomaximizethefundamentalvoltagecomponent.Asanadditionaldegreeoffreedom,thepositionofthereferencewaveformswithinthetrianglecanbechanged.ThiscanbeusedforcurrentbalanceinthetwohalvesoftheDC-1ink.3TestingresultsAfterSuccessfulinstallationofthree750kW/2.3kVthree-levelinvertersforone2.7kmlongbeltconveyordrivingsysteminChengzhuangMine.TheperformanceofthewholeVFCsystemwastested.Fig.3istakenfromthetest,whichshowstheexcellentcharacteristicofthebeltconveyordrivingsystemwithVFCcontroller.Fig.3includesfourcurves.Thecurve1showsthebelttension.Fromthecurveitcanbefindthatthefluctuationrangeofthebelttensionisverysmal1.Curve2andcurve3indicatecurrentandtorqueseparately.Curve4showsthevelocityofthecontrolledbelt.Thebeltvelocityhavethe“s”shapecharacteristic.A1ltheresultsofthetestshowaverysatisfiedcharacteristicforbeltdrivingsystem.4ConclusionsAdvancesinconveyordrivecontroltechnologyinrecentyearshaveresultedinmanymorereliable.Cost-effectiveandperformance-drivenconveyordrivesystemchoicesforusers.Amongthesechoices,theVariablefrequencycontrol(VFC)methodshowspromisinguseinthefutureforlongdistancebeltconveyordrivesduetoitsexcellentperformances.TheNPCthree-levelinverterusinghighvoltageIGBTsmaketheVariablefrequencycontrolinmediumvoltageapplicationsbecomemuchmoresimplebecausetheinverteritselfcanprovidethemediumvoltageneededatthemotorterminals,thuseliminatingthestep-uptransformerinmostapplicationsinthepast.ThetestingresultstakenfromtheVFCcontrolsystemwithNPCthree.1evelinvertersusedina2.7kmlongbeltconveyordrivesinChengzhuangMineindicatesthattheperformanceofNPCthree-levelinverterusingHV-IGBTstogetherwiththecontrolstrategyofrotorfield-orientedvectorcontrolforinductionmotordriveisexcellentforbeltconveyordrivingsystem.中文譯文:帶式輸送機(jī)及其牽引系統(tǒng)在運(yùn)送大量的物料時(shí),帶式輸送機(jī)在長距離的運(yùn)輸中起到了非常重要的競爭作用。輸送系統(tǒng)將會(huì)變得更大、更復(fù)雜,而驅(qū)動(dòng)系統(tǒng)也已經(jīng)歷了一個(gè)演變過程,并將繼續(xù)這樣下去。如今,較大的輸送帶和多驅(qū)動(dòng)系統(tǒng)需要更大的功率,比方3驅(qū)動(dòng)系統(tǒng)需要給輸送帶750KW(成莊煤礦輸送機(jī)驅(qū)動(dòng)系統(tǒng)的要求)??刂乞?qū)動(dòng)力和加速度扭矩是輸送機(jī)的關(guān)鍵。一個(gè)高效的驅(qū)動(dòng)系統(tǒng)應(yīng)該能順利的運(yùn)行,同時(shí)保持輸送帶張緊力在指定的平安極限負(fù)荷內(nèi)。為了負(fù)載分配在多個(gè)驅(qū)動(dòng)上,扭矩和速度控制在驅(qū)動(dòng)系統(tǒng)的設(shè)計(jì)中也是很重要的因素。由于輸送機(jī)驅(qū)動(dòng)系統(tǒng)控制技術(shù)的進(jìn)步,目前更多可靠的低本錢和高效驅(qū)動(dòng)的驅(qū)動(dòng)系統(tǒng)可供顧客選擇[1]。1帶式輸送機(jī)驅(qū)動(dòng)1.1帶式輸送機(jī)驅(qū)動(dòng)方式全電壓啟動(dòng)在全電壓啟動(dòng)設(shè)計(jì)中,帶式輸送機(jī)驅(qū)動(dòng)軸通過齒輪傳動(dòng)直接連接到電機(jī)。直接全壓驅(qū)動(dòng)沒有為變化的傳送負(fù)載提供任何控制,根據(jù)滿載和空載功率需求的比率,空載啟動(dòng)時(shí)比滿載可能快3~4倍。此種方式的優(yōu)點(diǎn)是:免維護(hù),啟動(dòng)系統(tǒng)簡單,低本錢,可靠性高。但是,不能控制啟動(dòng)扭矩和最大停止扭矩。因此,這種方式只用于低功率,結(jié)構(gòu)簡單的傳送驅(qū)動(dòng)中。降壓啟動(dòng)隨著傳送驅(qū)動(dòng)功率的增加,在加速期間控制使用的電機(jī)扭矩變得越來越重要。由于電機(jī)扭矩是電壓的函數(shù),電機(jī)電壓必須得到控制,一般用可控硅整流器(SCR)構(gòu)成的降壓啟動(dòng)裝置,先施加低電壓拉緊輸送帶,然后線性的增加供電電壓直到全電壓和最大帶速。但是,這種啟動(dòng)方式不會(huì)產(chǎn)生穩(wěn)定的加速度,當(dāng)加速完成時(shí),控制電機(jī)電壓的SCR鎖定在全導(dǎo)通,為電機(jī)提供全壓。此種控制方式功率可到達(dá)750kW。繞線轉(zhuǎn)子感應(yīng)電機(jī)繞線轉(zhuǎn)子感應(yīng)電機(jī)直接連接到驅(qū)動(dòng)系統(tǒng)減速機(jī)上,通過在電機(jī)轉(zhuǎn)子繞組中串聯(lián)電阻控制電機(jī)轉(zhuǎn)矩。在傳送裝置啟動(dòng)時(shí),把電阻串聯(lián)進(jìn)轉(zhuǎn)子產(chǎn)生較低的轉(zhuǎn)矩,當(dāng)傳送帶加速時(shí),電阻逐漸減少保持穩(wěn)定增加轉(zhuǎn)矩。在多驅(qū)動(dòng)系統(tǒng)中,一個(gè)外加的滑差電阻可能將總是串聯(lián)在轉(zhuǎn)子繞組回路中以幫助均分負(fù)載。該方式的電機(jī)系統(tǒng)設(shè)計(jì)相對簡單,但控制系統(tǒng)可能很復(fù)雜,因?yàn)樗鼈兪腔谟?jì)算機(jī)控制的電阻切換。當(dāng)今,控制系統(tǒng)的大多數(shù)是定制設(shè)計(jì)來滿足傳送系統(tǒng)的特殊規(guī)格。繞線轉(zhuǎn)子電機(jī)適合于需要400kW以上的系統(tǒng)。直流(DC)電機(jī)大多數(shù)傳送驅(qū)動(dòng)使用DC并勵(lì)電機(jī),電機(jī)的電樞在外部連接??刂艱C驅(qū)動(dòng)技術(shù)一般應(yīng)用SCR裝置,它允許連續(xù)的變速操作。DC驅(qū)動(dòng)系統(tǒng)在機(jī)械上是簡單的,但設(shè)計(jì)的電子電路,監(jiān)測和控制整個(gè)系統(tǒng),相比于其他軟啟動(dòng)系統(tǒng)的選擇是昂貴的,但在轉(zhuǎn)矩、負(fù)載均分和變速為主要考慮的場合,它又是一個(gè)可靠的,節(jié)約本錢的方式。DC電機(jī)一般使用在功率較大的輸送裝置上,包括需要輸送帶張力控制的多驅(qū)動(dòng)系統(tǒng)和需要寬變速范圍的輸送裝置上。1.2液力偶合器流體動(dòng)力偶合器通常被稱為液力偶合器,由三個(gè)根本單元組成:充當(dāng)離心泵的葉輪,推進(jìn)水壓的渦輪和裝進(jìn)兩個(gè)動(dòng)力部件的外殼。流體從葉輪到渦輪,在從動(dòng)軸產(chǎn)生扭矩。由于循環(huán)流體產(chǎn)生扭矩和速度,在驅(qū)動(dòng)軸和從動(dòng)軸之間不需要任何機(jī)械連接。這種連接產(chǎn)生的動(dòng)力決定于液力偶合器的充液量,扭矩正比于輸入速度。因在流體偶合中輸出速度小于輸入速度,其間的差值稱為滑差,一般為1%~3%。傳遞功率可達(dá)幾千千瓦。固定充液液力偶合器固定充液液力偶合器是在結(jié)構(gòu)較簡單和僅具有有限的彎曲局部的輸送裝置中最常用的軟啟動(dòng)裝置,其結(jié)構(gòu)相比照擬簡單,本錢又低,對現(xiàn)在使用的大多數(shù)輸送機(jī)能提供優(yōu)良的軟啟動(dòng)效果??勺兂湟阂毫ε己掀饕卜Q為限矩型液力偶合器。偶合器的葉輪裝在AC電機(jī)上,渦輪裝在從動(dòng)減速器高速軸上,包含操作部件的軸箱安裝在驅(qū)動(dòng)基座。偶合器的旋轉(zhuǎn)外殼有溢出口,允許液體不斷地從工作腔中流出進(jìn)入一個(gè)別離的輔助腔,油從輔助腔通過一個(gè)熱交換器泵到控制偶合器充液量的電磁閥。為了控制單機(jī)傳動(dòng)系統(tǒng)的啟動(dòng)轉(zhuǎn)矩,必須監(jiān)測AC電機(jī)電流,給電磁閥的控制提供反應(yīng)??勺兂湟阂毫ε己掀骺墒褂迷谥写蠊β瘦斔拖到y(tǒng)中,功率可到達(dá)數(shù)千千瓦。這種驅(qū)動(dòng)無論在機(jī)械,或在電氣上都是很復(fù)雜的,其驅(qū)動(dòng)系統(tǒng)本錢中等。勺管控制液力偶合器也稱為調(diào)速型液力偶合器。此種液力偶合器同樣由三個(gè)標(biāo)準(zhǔn)的液力偶合單元構(gòu)成,即葉輪、渦輪和一個(gè)包含工作環(huán)路的外殼。此種液力偶合器需要在工作腔以外設(shè)置導(dǎo)管(也稱勺管)和導(dǎo)管腔,依靠調(diào)節(jié)裝置改變勺管開度(勺管頂端與旋轉(zhuǎn)外殼間距)人為的改變工作腔的充液量,從而實(shí)現(xiàn)對輸出轉(zhuǎn)速的調(diào)節(jié)。這種控制提供了合理的平滑加速度,但其計(jì)算機(jī)控制系統(tǒng)很復(fù)雜。勺管控制液力偶合器可以應(yīng)用在單機(jī)或多機(jī)驅(qū)動(dòng)系統(tǒng),功率范圍為150kW~750kW。1.3變頻控制(VFC)變頻控制也是一種直接驅(qū)動(dòng)方式,它具有非常獨(dú)特的高性能。VFC裝置為感應(yīng)電機(jī)提供變化的頻率和電壓,產(chǎn)生優(yōu)良的啟動(dòng)轉(zhuǎn)矩和加速度。VFC設(shè)備是一個(gè)電力電子控制器,首先把AC整流成DC,然后利用逆變器,再將DC轉(zhuǎn)換成頻率、電壓可控的AC。VFC驅(qū)動(dòng)采用矢量控制或直接轉(zhuǎn)矩控制(DTC)技術(shù),能根據(jù)不同的負(fù)載采用不同的運(yùn)行速度。VFC驅(qū)動(dòng)能根據(jù)給定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論