版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第06講4.5.2用二分法求方程的近似解課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①理解運(yùn)用二分法逼近方程近似解的數(shù)學(xué)思想。②了解二分法只能用于求變號(hào)零點(diǎn)的方法。③借助數(shù)學(xué)工具用二分法求方程的近似解。④能解決與方程近似解有關(guān)的問(wèn)題。通過(guò)本節(jié)課的學(xué)習(xí),要求會(huì)用二分法進(jìn)行簡(jiǎn)單方程近似解的求解,并能根據(jù)題的要求,解決與二分法相關(guān)的參數(shù)問(wèn)題的處理。知識(shí)點(diǎn)01:區(qū)間中點(diǎn)對(duì)于區(qū)間,其中點(diǎn)知識(shí)點(diǎn)02:二分法1、二分法的概念對(duì)于在區(qū)間上圖象連續(xù)不斷且的函數(shù),通過(guò)不斷的把它的零點(diǎn)所在區(qū)間一分為二,使所得區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法(bisection)【即學(xué)即練1】(2023·全國(guó)·高一假期作業(yè))下列圖象中,不能用二分法求函數(shù)零點(diǎn)的是(
)A.
B.
C.
D.
【答案】A【詳解】根據(jù)零點(diǎn)存在定理,對(duì)于A,在零點(diǎn)的左右附近,函數(shù)值不改變符號(hào),所以不能用二分法求函數(shù)零點(diǎn).故選:A.2、用二分法求零點(diǎn)的近似值給定精確度,用二分法求函數(shù)零點(diǎn)的近似值的一般步驟如下:(1)確定零點(diǎn)的初始區(qū)間,驗(yàn)證;(2)求區(qū)間的中點(diǎn)(3)計(jì)算;①若(此時(shí)),則就是函數(shù)的零點(diǎn);②若(此時(shí)),則令;③若(此時(shí)),則令;(4)判斷是否達(dá)到精確度,若,則得到零點(diǎn)近似值(或),否則重復(fù)2--4【即學(xué)即練2】(2023春·江蘇南通·高一統(tǒng)考階段練習(xí))已知函數(shù)的表達(dá)式為,用二分法計(jì)算此函數(shù)在區(qū)間上零點(diǎn)的近似值,第一次計(jì)算、的值,第二次計(jì)算的值,第三次計(jì)算的值,則.【答案】/【詳解】因?yàn)?,,取的中點(diǎn),則,所以,函數(shù)的零點(diǎn)在區(qū)間內(nèi),故為區(qū)間的中點(diǎn)值,因此,.故答案為:.題型01二分法概念的理解【典例1】(2023·全國(guó)·高一假期作業(yè))用二分法求函數(shù)零點(diǎn)的近似值適合于(
)A.變號(hào)零點(diǎn) B.不變號(hào)零點(diǎn)C.都適合 D.都不適合【答案】A【詳解】由零點(diǎn)存在定理可知,二分法求函數(shù)零點(diǎn)的近似值適合于在零點(diǎn)兩邊的函數(shù)值異號(hào),即適用于變號(hào)零點(diǎn).故選:A.【典例2】(2023·高一課時(shí)練習(xí))下列函數(shù)圖象與x軸都有公共點(diǎn),其中不能用二分法求圖中函數(shù)零點(diǎn)近似值的是(
)A. B.C. D.【答案】A【詳解】根據(jù)題意,利用二分法求函數(shù)零點(diǎn)的條件是:函數(shù)在零點(diǎn)的左右兩側(cè)的函數(shù)值符號(hào)相反,即穿過(guò)x軸,據(jù)此分析選項(xiàng):A選項(xiàng)中函數(shù)不能用二分法求零點(diǎn),故選:A.【典例3】(多選)(2023春·湖南長(zhǎng)沙·高二長(zhǎng)沙市長(zhǎng)郡梅溪湖中學(xué)校考期中)下列函數(shù)中,能用二分法求函數(shù)零點(diǎn)的有(
)A. B.C. D.【答案】ABD【詳解】選項(xiàng)A:由,可得在上存在零點(diǎn);選項(xiàng)B:由,可得在上存在零點(diǎn);選項(xiàng)C:,則其零點(diǎn)為,但不存在實(shí)數(shù)滿(mǎn)足,因而不能用二分法求此函數(shù)零點(diǎn);選項(xiàng)D:由,可得在上存在零點(diǎn).故選:ABD【變式1】(2023春·全國(guó)·高一校聯(lián)考開(kāi)學(xué)考試)下列函數(shù)中,不能用二分法求零點(diǎn)的是(
)A. B. C. D.【答案】B【詳解】對(duì)于A,有唯一零點(diǎn),且函數(shù)值在零點(diǎn)兩側(cè)異號(hào),則可用二分法求零點(diǎn);對(duì)于B,有唯一零點(diǎn),但函數(shù)值在零點(diǎn)兩側(cè)同號(hào),則不可用二分法求零點(diǎn);對(duì)于C,有兩個(gè)不同零點(diǎn),且在每個(gè)零點(diǎn)左右兩側(cè)函數(shù)值異號(hào),則可用二分法求零點(diǎn);對(duì)于D,有唯一零點(diǎn),且函數(shù)值在零點(diǎn)兩側(cè)異號(hào),則可用二分法求零點(diǎn).故選:B.【變式2】(2023·高一課時(shí)練習(xí))下列函數(shù)一定能用“二分法”求其零點(diǎn)的是(
)A.(k,b為常數(shù),且)B.(a,b,c為常數(shù),且)C.D.(,k為常數(shù))【答案】A【詳解】解:由指數(shù)函數(shù)與反比例函數(shù)的性質(zhì)可知其沒(méi)有函數(shù)零點(diǎn),故C,D不能用“二分法”求其零點(diǎn),故CD錯(cuò)誤;對(duì)于二次函數(shù)(a,b,c為常數(shù),且),當(dāng)時(shí),不能用二分法,故B錯(cuò)誤;由于一次函數(shù)一定是單調(diào)函數(shù),且存在函數(shù)零點(diǎn),故可以用“二分法”求其零點(diǎn),故A選項(xiàng)正確.故選:A【變式3】(2023·上海·高一專(zhuān)題練習(xí))下列函數(shù)圖象均與軸有交點(diǎn),其中能用二分法求函數(shù)零點(diǎn)的是【答案】③【詳解】若函數(shù)的零點(diǎn)能用二分法求解,則在零點(diǎn)的左右兩側(cè),函數(shù)值符號(hào)相反;由圖象可知:只有③中圖象滿(mǎn)足此條件.故答案為:③.題型02確定零點(diǎn)(根)所在區(qū)間【典例1】(2023·全國(guó)·高一假期作業(yè))函數(shù)在區(qū)間上的零點(diǎn)必屬于區(qū)間(
)A. B. C. D.【答案】D【詳解】解法一:二分法由已知可求得,,,,,.對(duì)于A項(xiàng),因?yàn)?,所以A項(xiàng)錯(cuò)誤;對(duì)于B項(xiàng),因?yàn)?,所以B項(xiàng)錯(cuò)誤;對(duì)于C項(xiàng),因?yàn)椋訡項(xiàng)錯(cuò)誤;對(duì)于D項(xiàng),因?yàn)?,所以D項(xiàng)正確.解法二:因?yàn)椋?,即函?shù)在區(qū)間上的零點(diǎn)為2,故D正確.故選:D.【典例2】(2023·全國(guó)·高一假期作業(yè))函數(shù)的零點(diǎn),對(duì)區(qū)間利用兩次“二分法”,可確定所在的區(qū)間為.【答案】/【詳解】解:,,而,∴函數(shù)的零點(diǎn)在區(qū)間.又,,∴函數(shù)的零點(diǎn)在.故答案為:.【典例3】(2023秋·山東濟(jì)寧·高一??计谀┮阎x在上的偶函數(shù)滿(mǎn)足,且當(dāng)時(shí),,若在內(nèi)關(guān)于的方程恰有3個(gè)不同的實(shí)數(shù)根,則的取值范圍是A. B. C. D.【答案】C【分析】∵,∴,即,∴函數(shù)f(x)的周期為4.當(dāng)x∈[0,2]時(shí),則?x∈[?2,0],∴,∵f(x)是偶函數(shù),∴由f(x)?loga(x+2)=0,得f(x)=loga(x+2),令作出函數(shù)的圖象如圖所示:①當(dāng)0<a<1時(shí),函數(shù)g(x)=loga(x+2)單調(diào)遞減,此時(shí)兩函數(shù)的圖象只有1個(gè)交點(diǎn),不滿(mǎn)足條件;②當(dāng)a>1時(shí),要使方程f(x)?loga(x+2)=0恰有3個(gè)不同的實(shí)數(shù)根,則需函數(shù)f(x)與g(x)=loga(x+2)的圖象有3個(gè)不同的交點(diǎn),則需滿(mǎn)足,即,解得.故a的取值范圍是.答案:C【變式1】(2023春·江蘇宿遷·高一校考期中)用二分法求方程在內(nèi)的近似解,已知判斷,方程的根應(yīng)落在區(qū)間(
)A. B. C. D.【答案】B【詳解】令,因?yàn)榕c在上單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)椋?,,所以在上有唯一零點(diǎn),即,故,所以方程的根落在區(qū)間上,故選:B.【變式2】(2023·全國(guó)·高一假期作業(yè))用二分法求函數(shù)的零點(diǎn)可以取的初始區(qū)間是(
)A. B. C. D.【答案】A【詳解】因?yàn)?,,且單調(diào)遞增,即當(dāng)時(shí),,所以零點(diǎn)在內(nèi),故選:A【變式3】(2023·全國(guó)·高一假期作業(yè))用二分法求方程近似解時(shí),所取的第一個(gè)區(qū)間可以是(
)A. B. C. D.【答案】B【詳解】令,因?yàn)楹瘮?shù)在上都是增函數(shù),所以函數(shù)在上是增函數(shù),,所以函數(shù)在區(qū)間上有唯一零點(diǎn),所以用二分法求方程近似解時(shí),所取的第一個(gè)區(qū)間可以是.故選:B.題型03用二分法求函數(shù)的零點(diǎn)的近似值【典例1】(2023·全國(guó)·高一假期作業(yè))某同學(xué)在用二分法研究函數(shù)的零點(diǎn)時(shí),.得到如下函數(shù)值的參考數(shù)據(jù):x11.251.3751.406251.43751.50.05670.14600.3284則下列說(shuō)法正確的是(
)A.1.25是滿(mǎn)足精確度為0.1的近似值 B.1.5是滿(mǎn)足精確度為0.1的近似值C.1.4375是滿(mǎn)足精確度為0.05的近似值 D.1.375是滿(mǎn)足精確度為0.05的近似值【答案】D【詳解】因?yàn)椋?,故AC錯(cuò)誤;因?yàn)?,,且,故D正確;因?yàn)?,且故C錯(cuò)誤;故選:D【典例2】(多選)(2023秋·高一單元測(cè)試)某同學(xué)求函數(shù)的零點(diǎn)時(shí),用計(jì)算器算得部分函數(shù)值如表所示:則方程的近似解(精確度)可取為(
)A. B. C. D.【答案】AB【詳解】因?yàn)楹瘮?shù)在其定義域上單調(diào)遞增,結(jié)合表格可知,方程的近似解在(2.5,3),(2.5,2.75),(2.5,2.5625)內(nèi),又精確度0.1,∴方程的近似解(精確度0.1)可取為2.51,2.56.故選:AB.【典例3】(2023·高一課時(shí)練習(xí))用二分法求函數(shù)的一個(gè)零點(diǎn),其參考數(shù)據(jù)如下:據(jù)此數(shù)據(jù),可知的一個(gè)零點(diǎn)的近似值可取為(誤差不超過(guò)0.005).【答案】1.55935(答案不唯一)【詳解】解:因?yàn)椋?,根?jù)零點(diǎn)存在性定理,可知零點(diǎn)在內(nèi),由二分法可得零點(diǎn)的近似值可取為,所以的一個(gè)零點(diǎn)的近似值可取為1.55935,誤差不超過(guò)0.005.故答案為:1.55935(答案不唯一).【變式1】(2023春·江蘇南通·高一校考期末)已知函數(shù)的部分函數(shù)值如下表所示:那么函數(shù)的一個(gè)零點(diǎn)的近似值(精確度為0.1)為(
)x10.50.750.6250.56250.63210.27760.0897A.0.55 B.0.57 C.0.65 D.0.7【答案】B【詳解】易知在上單調(diào)遞增,由表格得,且,∴函數(shù)零點(diǎn)在,∴一個(gè)近似值為0.57.故選:B.【變式2】(2023·全國(guó)·高三專(zhuān)題練習(xí))函數(shù)的一個(gè)正數(shù)零點(diǎn)附近的函數(shù)值用二分法逐次計(jì)算,參考數(shù)據(jù)如下:
那么方程的一個(gè)近似解(精確度為0.1)為(
)A.1.5 B.1.25 C.1.41 D.1.44【答案】C【詳解】由所給數(shù)據(jù)可知,函數(shù)在區(qū)間內(nèi)有一個(gè)根,因?yàn)?,,所以根在?nèi),因?yàn)椋圆粷M(mǎn)足精確度,繼續(xù)取區(qū)間中點(diǎn),因?yàn)?,,所以根在區(qū)間,因?yàn)?,所以不滿(mǎn)足精確度,繼續(xù)取區(qū)間中點(diǎn),因?yàn)椋?,所以根在區(qū)間內(nèi),因?yàn)闈M(mǎn)足精確度,因?yàn)?,所以根在?nèi),所以方程的一個(gè)近似解為,故選:C【變式3】(2023春·江蘇揚(yáng)州·高一揚(yáng)州市廣陵區(qū)紅橋高級(jí)中學(xué)??计谥校┯枚址ㄇ蠓匠痰慕平猓蟮玫牟糠趾瘮?shù)值數(shù)據(jù)如下表所示:121.51.6251.751.8751.8125-63-2.625-1.459-0.141.34180.5793則當(dāng)精確度為0.1時(shí),方程的近似解可取為A. B. C. D.【答案】C【詳解】根據(jù)表中數(shù)據(jù)可知,,由精確度為可知,,故方程的一個(gè)近似解為,選C.題型04二分法的過(guò)程【典例1】(2023春·江蘇宿遷·高一??计谥校┯枚址ㄇ蠓匠淘趦?nèi)的近似解,已知判斷,方程的根應(yīng)落在區(qū)間(
)A. B. C. D.【答案】B【詳解】令,因?yàn)榕c在上單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)椋?,,所以在上有唯一零點(diǎn),即,故,所以方程的根落在區(qū)間上,故選:B.【典例2】(2023·全國(guó)·高一假期作業(yè))用二分法求函數(shù)在內(nèi)的唯一零點(diǎn)時(shí),精度為0.001,則經(jīng)過(guò)一次二分就結(jié)束計(jì)算的條件是(
)A. B.C. D.【答案】B【詳解】根據(jù)二分法的步驟知,經(jīng)過(guò)一次計(jì)算,區(qū)間長(zhǎng)度變?yōu)?,?dāng)時(shí),結(jié)束計(jì)算,故,故選:B.【典例3】(2023·全國(guó)·高一假期作業(yè))已知函數(shù)在上有零點(diǎn),用二分法求零點(diǎn)的近似值(精確度小于0.1)時(shí),至少需要進(jìn)行次函數(shù)值的計(jì)算.【答案】3【詳解】至少需要進(jìn)行3次函數(shù)值的計(jì)算,理由如下:取區(qū)間的中點(diǎn),且,所以.取區(qū)間的中點(diǎn),且,所以.取區(qū)間的中點(diǎn),且,所以.因?yàn)?,所以區(qū)間的中點(diǎn)即為零點(diǎn)的近似值,即,所以至少需進(jìn)行3次函數(shù)值的計(jì)算.故答案為:3【變式1】(2023·全國(guó)·高一假期作業(yè))已知函數(shù)在內(nèi)有一個(gè)零點(diǎn),要使零點(diǎn)的近似值的精確度為0.001,若只從二等分區(qū)間的角度來(lái)考慮,則對(duì)區(qū)間至少需要二等分(
)A.8次 B.9次 C.10次 D.11次【答案】D【詳解】設(shè)對(duì)區(qū)間至少二等分n次,此時(shí)區(qū)間長(zhǎng)度為2,則第n次二等分后區(qū)間長(zhǎng)為,依題意得,所以,,所以.故選:D【變式2】(2023春·江蘇南通·高一統(tǒng)考階段練習(xí))已知函數(shù)的表達(dá)式為,用二分法計(jì)算此函數(shù)在區(qū)間上零點(diǎn)的近似值,第一次計(jì)算、的值,第二次計(jì)算的值,第三次計(jì)算的值,則.【答案】/【詳解】因?yàn)?,,取的中點(diǎn),則,所以,函數(shù)的零點(diǎn)在區(qū)間內(nèi),故為區(qū)間的中點(diǎn)值,因此,.故答案為:.【變式3】(2023·全國(guó)·高一假期作業(yè))用“二分法”研究函數(shù)的零點(diǎn)時(shí),第一次計(jì)算,可知必存在零點(diǎn),則第二次應(yīng)計(jì)算,這時(shí)可以判斷零點(diǎn).【答案】【詳解】因?yàn)榈谝淮斡?jì)算,可知必存在零點(diǎn),又,,由零點(diǎn)存在性定理可知.故答案為:;A夯實(shí)基礎(chǔ)一、單選題1.(2023秋·吉林·高一吉林省實(shí)驗(yàn)校考期末)函數(shù)的圖象是連續(xù)不斷的曲線,在用二分法求方程在內(nèi)近似解的過(guò)程中可得,,,則方程的解所在區(qū)間為(
)A. B.C. D.不能確定【答案】B【詳解】解:因?yàn)槭沁B續(xù)函數(shù),且,,,所以,,所以在上存在零點(diǎn),即方程的解所在區(qū)間為.故選:B2.(2023·全國(guó)·高一假期作業(yè))已知函數(shù)的一個(gè)零點(diǎn)附近的函數(shù)值的參考數(shù)據(jù)如下表:x00.50.531250.56250.6250.7510.0660.2150.5121.099由二分法,方程的近似解(精確度為0.05)可能是(
)A.0.625 B. C.0.5625 D.0.066【答案】C【詳解】由題意得在區(qū)間上單調(diào)遞增,設(shè)方程的解的近似值為,由表格得,所以,因?yàn)?,所以方程的近似解可取?.5625.故選:C.3.(2023·全國(guó)·高一假期作業(yè))用二分法求函數(shù)的一個(gè)零點(diǎn)的近似值(誤差不超過(guò))時(shí),依次計(jì)算得到如下數(shù)據(jù):,,,,關(guān)于下一步的說(shuō)法正確的是()A.已經(jīng)達(dá)到對(duì)誤差的要求,可以取作為近似值B.已經(jīng)達(dá)到對(duì)誤差的要求,可以取作為近似值C.沒(méi)有達(dá)到對(duì)誤差的要求,應(yīng)該接著計(jì)算D.沒(méi)有達(dá)到對(duì)誤差的要求,應(yīng)該接著計(jì)算【答案】C【詳解】,在內(nèi)有零點(diǎn);,沒(méi)有達(dá)到對(duì)誤差的要求,應(yīng)該繼續(xù)計(jì)算.故選:C.4.(2023·全國(guó)·高一專(zhuān)題練習(xí))用二分法研究函數(shù)的零點(diǎn)時(shí),第一次計(jì)算,得,,第二次應(yīng)計(jì)算,則等于(
)A.1 B. C.0.25 D.0.75【答案】C【詳解】解:因?yàn)?,,所以在?nèi)存在零點(diǎn),根據(jù)二分法第二次應(yīng)該計(jì)算,其中;故選:C5.(2023·高一課時(shí)練習(xí))在用“二分法”求函數(shù)零點(diǎn)近似值時(shí),若第一次所取區(qū)間為,則第三次所取區(qū)間可能是(
)A. B. C. D.【答案】C【詳解】第一次所取區(qū)間為,則第二次所取區(qū)間可能是;第三次所取的區(qū)間可能是.故選:.6.(2023春·全國(guó)·高一校聯(lián)考開(kāi)學(xué)考試)下列函數(shù)中,不能用二分法求零點(diǎn)的是(
)A. B. C. D.【答案】B【詳解】對(duì)于A,有唯一零點(diǎn),且函數(shù)值在零點(diǎn)兩側(cè)異號(hào),則可用二分法求零點(diǎn);對(duì)于B,有唯一零點(diǎn),但函數(shù)值在零點(diǎn)兩側(cè)同號(hào),則不可用二分法求零點(diǎn);對(duì)于C,有兩個(gè)不同零點(diǎn),且在每個(gè)零點(diǎn)左右兩側(cè)函數(shù)值異號(hào),則可用二分法求零點(diǎn);對(duì)于D,有唯一零點(diǎn),且函數(shù)值在零點(diǎn)兩側(cè)異號(hào),則可用二分法求零點(diǎn).故選:B.7.(2023春·福建福州·高一福州三中校考期中)用二分法求函數(shù)在區(qū)間上的零點(diǎn),要求精確度為時(shí),所需二分區(qū)間的次數(shù)最少為(
)A. B. C. D.【答案】C【詳解】解:開(kāi)區(qū)間的長(zhǎng)度等于1,每經(jīng)過(guò)一次操作,區(qū)間長(zhǎng)度變?yōu)樵瓉?lái)的一半,經(jīng)過(guò)此操作后,區(qū)間長(zhǎng)度變?yōu)椋枚址ㄇ蠛瘮?shù)在區(qū)間上近似解,要求精確度為,,解得,故選:C.8.(2023·全國(guó)·高一假期作業(yè))在使用二分法計(jì)算函數(shù)的零點(diǎn)的近似解時(shí),現(xiàn)已知其所在區(qū)間為,如果要求近似解的精確度為0.1,則接下來(lái)至少需要計(jì)算(
)次區(qū)間中點(diǎn)的函數(shù)值.A.2 B.3 C.4 D.5【答案】C【詳解】開(kāi)區(qū)間的長(zhǎng)度等于1,每經(jīng)過(guò)一次二分法計(jì)算,區(qū)間長(zhǎng)度為原來(lái)的一半,經(jīng)過(guò)次二分法計(jì)算后,區(qū)間長(zhǎng)度變?yōu)椋质褂枚址ㄓ?jì)算函數(shù)的在區(qū)間上零點(diǎn)的近似解時(shí),要求近似解的精確度為0.1,所以,則,又,所以,又,故,所以接下來(lái)至少需要計(jì)算你次區(qū)間中點(diǎn)的函數(shù)值.故選:C.二、多選題9.(2023·全國(guó)·高一專(zhuān)題練習(xí))在用二分法求函數(shù)的一個(gè)正實(shí)數(shù)零點(diǎn)時(shí),經(jīng)計(jì)算,,,,則函數(shù)的一個(gè)誤差不超過(guò)的正實(shí)數(shù)零點(diǎn)可以為(
)A. B. C. D.【答案】BCD【詳解】因?yàn)?,,,則函數(shù)的零點(diǎn)所在的區(qū)間為,所以,函數(shù)的一個(gè)誤差不超過(guò)的正實(shí)數(shù)零點(diǎn)可以為或或.故選:BCD.10.(2023·全國(guó)·高一假期作業(yè))關(guān)于函數(shù)的零點(diǎn),下列說(shuō)法正確的是:()(參考數(shù)據(jù):,,,,,)A.函數(shù)的零點(diǎn)個(gè)數(shù)為1B.函數(shù)的零點(diǎn)個(gè)數(shù)為2C.用二分法求函數(shù)的一個(gè)零點(diǎn)的近似解可取為(精確到)D.用二分法求函數(shù)的一個(gè)零點(diǎn)的近似解可取為(精確到)【答案】AC【詳解】解:易知函數(shù)在上單調(diào)遞增,因?yàn)椋?,所?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安裝工程綜合險(xiǎn)種2024年保險(xiǎn)協(xié)議
- 2024跨國(guó)勞務(wù)輸出協(xié)議范例
- 2024食堂運(yùn)營(yíng)管理承包協(xié)議條款細(xì)則
- 2024年協(xié)議執(zhí)行保證金協(xié)議格式指南
- 2024屆THUSSAT北京市清華大學(xué)中學(xué)高三下學(xué)期領(lǐng)軍考試數(shù)學(xué)試題
- 保姆服務(wù)協(xié)議:老年照護(hù)專(zhuān)項(xiàng)
- 2024年專(zhuān)業(yè)接駁車(chē)配件訂購(gòu)協(xié)議格式
- DB11∕T 1650-2019 工業(yè)開(kāi)發(fā)區(qū)循環(huán)化技術(shù)規(guī)范
- 2024年工程現(xiàn)場(chǎng)工長(zhǎng)職務(wù)聘用協(xié)議
- 2024年財(cái)務(wù)總監(jiān)職業(yè)協(xié)議范本
- 臨床醫(yī)學(xué)職業(yè)生涯規(guī)劃
- 《煤礦安全生產(chǎn)方面的新政策、規(guī)定和要求》培訓(xùn)課件2024
- (2024年)《工傷保險(xiǎn)培訓(xùn)》ppt課件完整版
- GB/T 43824-2024村鎮(zhèn)供水工程技術(shù)規(guī)范
- 企業(yè)人才測(cè)評(píng)在線測(cè)評(píng)題庫(kù)及答案
- 《蘋(píng)果公司發(fā)展史》課件
- 四川省成都市第十八中學(xué)2022-2023學(xué)年八年級(jí)下學(xué)期期中英語(yǔ)試題
- 冬季樹(shù)木防寒技術(shù)
- 大數(shù)據(jù)營(yíng)銷(xiāo)-分章練習(xí)題(含答案)
- 設(shè)備管理思路及方案
- 第2章大數(shù)據(jù)采集及預(yù)處理
評(píng)論
0/150
提交評(píng)論