2023屆江西省南昌市蓮塘鎮(zhèn)第一中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2023屆江西省南昌市蓮塘鎮(zhèn)第一中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2023屆江西省南昌市蓮塘鎮(zhèn)第一中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2023屆江西省南昌市蓮塘鎮(zhèn)第一中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2023屆江西省南昌市蓮塘鎮(zhèn)第一中學高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,且,則()A.2 B. C. D.2.關于x的不等式的解集是,則關于x的不等式的解集是()A. B.C. D.3.某公司在甲、乙、丙、丁四個地區(qū)分別有150,120,180,150個銷售點.公司為了調(diào)查產(chǎn)品銷售情況,需從這600個銷售點中抽取一個容量為100的樣本.記這項調(diào)查為①;在丙地區(qū)有20個大型銷售點,要從中抽取7個調(diào)查其銷售收入和售后服務等情況,記這項調(diào)查為②,則完成①,②這兩項調(diào)查宜采用的抽樣方法依次是()A.分層抽樣法,系統(tǒng)抽樣法 B.分層抽樣法,簡單隨機抽樣法C.系統(tǒng)抽樣法,分層抽樣法 D.簡單隨機抽樣法,分層抽樣法4.已知向量,,若,則的值為()A. B.1 C. D.5.設變量滿足約束條件:,則的最小值()A. B. C. D.6.已知,,為坐標原點,則的外接圓方程是()A. B.C. D.7.已知三棱柱的側(cè)棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于()A. B. C. D.8.當前,我省正分批修建經(jīng)濟適用房以解決低收入家庭住房緊張問題.已知甲、乙、丙三個社區(qū)現(xiàn)分別有低收入家庭360戶、270戶、180戶,若第一批經(jīng)濟適用房中有90套住房用于解決這三個社區(qū)中90戶低收入家庭的住房問題,先采用分層抽樣的方法決定各社區(qū)戶數(shù),則應從乙社區(qū)中抽取低收入家庭的戶數(shù)為()A.30 B.40 C.20 D.369.在中,已知,則的面積為()A. B. C. D.10.sin480°等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的公差為,且,其前項和為,若滿足,,成等比數(shù)列,且,則______,______.12.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.13.半徑為的圓上,弧長為的弧所對圓心角的弧度數(shù)為________.14.已知等邊三角形的邊長為2,點P在邊上,點Q在邊的延長線上,若,則的最小值為______.15.函數(shù),的遞增區(qū)間為______.16.如圖為函數(shù)(,,,)的部分圖像,則函數(shù)解析式為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖長方體中,,分別為棱,的中點(1)求證:平面平面;(2)請在答題卡圖形中畫出直線與平面的交點(保留必要的輔助線),寫出畫法并計算的值(不必寫出計算過程).18.2019年4月23日“世界讀書日”來臨之際,某校為了了解中學生課外閱讀情況,隨機抽取了100名學生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5),第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示.已知第三組的頻數(shù)是第五組頻數(shù)的3倍.(1)求的值,并根據(jù)頻率分布直方圖估計該校學生一周課外閱讀時間的平均值;(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加?!爸腥A詩詞比賽”.經(jīng)過比賽后,從這6人中隨機挑選2人組成該校代表隊,求這2人來自不同組別的概率.19.如圖,是的直徑,所在的平面,是圓上一點,,.(1)求證:平面平面;(2)求直線與平面所成角的正切值.20.如圖,在平面直角坐標系xOy中,已知以M點為圓心的圓及其上一點.(1)設圓N與y軸相切,與圓M外切,且圓心在直線上,求圓N的標準方程;(2)設平行于OA的直線l與圓M相交于B,C兩點且,求直線l的方程.21.已知向量,,函數(shù).(1)若,求的取值集合;(2)當時,不等式恒成立,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)向量平行得到,再利用和差公式計算得到答案.【詳解】向量,且,則..故選:.【點睛】本題考查了向量平行求參數(shù),和差公式,意在考查學生的綜合應用能力.2、D【解析】

由不等式與方程的關系可得且,則等價于,再結(jié)合二次不等式的解法求解即可.【詳解】解:由關于x的不等式的解集是,由不等式與方程的關系可得且,則等價于等價于,解得,即關于x的不等式的解集是,故選:D.【點睛】本題考查了不等式與方程的關系,重點考查了二次不等式的解法,屬基礎題.3、B【解析】

此題為抽樣方法的選取問題.當總體中個體較少時宜采用簡單隨機抽樣法;當總體中的個體差異較大時,宜采用分層抽樣;當總體中個體較多時,宜采用系統(tǒng)抽樣.【詳解】依據(jù)題意,第①項調(diào)查中,總體中的個體差異較大,應采用分層抽樣法;第②項調(diào)查總體中個體較少,應采用簡單隨機抽樣法.

故選B.【點睛】本題考查隨機抽樣知識,屬基本題型、基本概念的考查.4、B【解析】

直接利用向量的數(shù)量積列出方程求解即可.【詳解】向量,,若,可得2﹣2=0,解得=1,故選B.【點睛】本題考查向量的數(shù)量積的應用,考查計算能力,屬于基礎題.5、D【解析】

如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當經(jīng)過A時,的最小值為-8,故選D.6、A【解析】

根據(jù)圓的幾何性質(zhì)判斷出是直徑,由此求得圓心坐標和半徑,進而求得三角形外接圓的方程.【詳解】由于直角對的弦是直徑,故是圓的直徑,所以圓心坐標為,半徑為,所以圓的標準方程為,化簡得,故選A.【點睛】本小題主要考查三角形外接圓的方程的求法,考查圓的幾何性質(zhì),屬于基礎題.7、B【解析】由題意不妨令棱長為,如圖在底面內(nèi)的射影為的中心,故由勾股定理得過作平面,則為與底面所成角,且如圖作于中點與底面所成角的正弦值故答案選點睛:本題考查直線與平面所成的角,要先過點作垂線構造出線面角,然后計算出各邊長度,在直角三角形中解三角形.8、A【解析】

先求出每個個體被抽到的概率,再由乙社區(qū)的低收入家庭數(shù)量乘以每個個體被抽到的概率,即可求解【詳解】每個個體被抽到的概率為,乙社區(qū)由270戶低收入家庭,故應從乙中抽取低收入家庭的戶數(shù)為,故選:A【點睛】本題考查分層抽樣的應用,屬于基礎題9、B【解析】

根據(jù)三角形的面積公式求解即可.【詳解】的面積.

故選:B【點睛】本題主要考查了三角形的面積公式,屬于基礎題.10、D【解析】試題分析:因為,所以選D.考點:誘導公式,特殊角的三角函數(shù)值.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】

由,可求出,再由,,成等比數(shù)列,可建立關系式,求出,進而求出即可.【詳解】由,可知,即,又,,成等比數(shù)列,所以,則,即,解得或,因為,所以,,所以.故答案為:2;.【點睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列前項和的求法,考查學生的計算求解能力,屬于基礎題.12、.【解析】分析:由題意結(jié)合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.13、【解析】

根據(jù)弧長公式即可求解.【詳解】由弧長公式可得故答案為:【點睛】本題主要考查了弧長公式的應用,屬于基礎題.14、【解析】

以為軸建立平面直角坐標系,設,用t表示,求其最小值即可得到本題答案.【詳解】過點A作BC的垂線,垂足為O,以為軸建立平面直角坐標系.作PM垂直BC交于點M,QH垂直y軸交于點H,CN垂直HQ交于點N.設,則,故有所以,,當時,取最小值.故答案為:【點睛】本題主要考查利用建立平面直角坐標系解決向量的取值范圍問題.15、[0,](開區(qū)間也行)【解析】

根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間,以及題中條件,即可求出結(jié)果.【詳解】由得:,又,所以函數(shù),的遞增區(qū)間為.故答案為【點睛】本題主要考查正弦型函數(shù)的單調(diào)區(qū)間,熟記正弦函數(shù)的單調(diào)區(qū)間即可,屬于??碱}型.16、【解析】

由函數(shù)的部分圖像,先求得,得到,再由,得到,結(jié)合,求得,即可得到函數(shù)的解析式.【詳解】由題意,根據(jù)函數(shù)的部分圖像,可得,所以,又由,即,又由,即,解得,即,又因為,所以,所以.故答案為:.【點睛】本題主要考查了利用三角函數(shù)的圖象求解函數(shù)的解析式,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準確計算是解答的關鍵,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2);畫圖見解析【解析】

(1)推導出平面,得出,得出,從而得到,進而證出平面,由此證得平面平面.(2)根據(jù)通過輔助線推出線面平行再推出線線平行,再根據(jù)“一條和平面不平行的直線與平面的公共點即為直線與平面的交點”得到點位置,然后計算的值.【詳解】(1)證明:在長方體中,,分別為棱,的中點,所以平面,則,在中,,在中,,所以,因為在中,,所以,所以,又因為,所以平面,因為平面,所以平面平面(2)如圖所示:設,連接,取中點記為,過作,且,則.證明:因為為中點,所以且;又因為,且,所以且,所以四邊形為平行四邊形,則;又因為,所以,且平面,所以平面;又因為,則,平面,即點為直線與平面的交點;因為,所以,則;且有上述證明可知:四邊形為平行四邊形,所以,所以,因為,.【點睛】本題考查線面位置關系的判定與證明,熟練掌握空間中線面位置關系的定義、判定、幾何特征是解答的關鍵,其中垂直、平行關系證明中應用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.18、(1)a=0.06,平均值為12.25小時(2)【解析】

(1)由頻率分布直方圖可得第三組和第五組的頻率之和,第三組的頻率,由此能求出a和該樣本數(shù)據(jù)的平均數(shù),從而可估計該校學生一周課外閱讀時間的平均值;(2)從第3、4、5組抽取的人數(shù)分別為3、2、1,設為A,B,C,D,E,F(xiàn),利用列舉法能求出從該6人中選拔2人,從而得到這2人來自不同組別的概率.【詳解】(1)由頻率分布直方圖可得第三組和第五組的頻率之和為,第三組的頻率為∴該樣本數(shù)據(jù)的平均數(shù)所以可估計該校學生一周課外閱讀時間的平均值為小時.(2)易得從第3、4、5組抽取的人數(shù)分別為3、2、1,設為,則從該6人中選拔2人的基本事件有:共15種,其中來自不同的組別的基本事件有:,共11種,∴這2人來自不同組別的概率為.【點睛】本題考查平均數(shù)、概率的求法,考查古典概型、頻率分布直方圖等基礎知識,考查運算求解能力,是基礎題.19、(1)證明見解析;(2)2.【解析】

(1)首先證明平面,利用線面垂直推出平面平面;(2)找到直線與平面所成角所在三角形,利用三角形邊角關系求解即可.【詳解】(1)∵是直徑,∴,即,又∵所在的平面,在所在的平面內(nèi),∴,∴平面,又平面,∴平面平面;(2)∵平面,∴直線與平面所成角即,設,∵,∴,∴,∴.【點睛】本題主要考查了面面垂直的證明,直線與平面所成角的求解,屬于一般題.20、(1)(2)或.【解析】

(1)根據(jù)由圓心在直線y=6上,可設,再由圓N與y軸相切,與圓M外切得到圓N的半徑為和得解.(2)由直線l平行于OA,求得直線l的斜率,設出直線l的方程,求得圓心M到直線l的距離,再根據(jù)垂徑定理確定等量關系,求直線方程.【詳解】(1)圓M的標準方程為,所以圓心M(7,6),半徑為5,.由圓N圓心在直線y=6上,可設因為圓N與y軸相切,與圓M外切所以,圓N的半徑為從而解得.所以圓N的標準方程為.(2)因為直線l平行于OA,所以直線l的斜率為.設直線l的方程為,即則圓心M到直線l的距離因為而所以解得或.故直線l的方程為或.【點睛】本題主要考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論