黑龍江省饒河縣高級中學2022-2023學年高一數(shù)學第二學期期末預測試題含解析_第1頁
黑龍江省饒河縣高級中學2022-2023學年高一數(shù)學第二學期期末預測試題含解析_第2頁
黑龍江省饒河縣高級中學2022-2023學年高一數(shù)學第二學期期末預測試題含解析_第3頁
黑龍江省饒河縣高級中學2022-2023學年高一數(shù)學第二學期期末預測試題含解析_第4頁
黑龍江省饒河縣高級中學2022-2023學年高一數(shù)學第二學期期末預測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若正數(shù)滿足,則的最小值為A. B.C. D.32.已知,則三個數(shù)、、由小到大的順序是()A. B.C. D.3.為了得到函數(shù)的圖像,可以將函數(shù)的圖像()A.向右平移個長度單位 B.向左平移個長度單位C.向右平移個長度單位 D.向左平移個長度單位4.采用系統(tǒng)抽樣方法從人中抽取人做問卷調查,為此將他們隨機編號為,,,,分組后某組抽到的號碼為1.抽到的人中,編號落入?yún)^(qū)間的人數(shù)為()A.10 B. C.12 D.135.下列事件是隨機事件的是(1)連續(xù)兩次擲一枚硬幣,兩次都出現(xiàn)正面向上.(2)異性電荷相互吸引(3)在標準大氣壓下,水在℃時結冰(4)任意擲一枚骰子朝上的點數(shù)是偶數(shù)A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)6.圓的半徑是,則的圓心角與圓弧圍成的扇形面積是()A. B. C. D.7.若,,,點C在AB上,且,設,則的值為()A. B. C. D.8.已知等差數(shù)列的公差,若的前項之和大于前項之和,則()A. B. C. D.9.在中,角A、B、C的對邊分別為a、b、c,若,則角()A. B. C. D.10.把函數(shù)的圖象沿軸向右平移個單位,再把所得圖象上各點的縱坐標不變,橫坐標變?yōu)樵瓉淼模傻煤瘮?shù)的圖象,則的解析式為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若圓弧長度等于圓內接正六邊形的邊長,則該圓弧所對圓心角的弧度數(shù)為________.12.已知,則______;的最小值為______.13.設常數(shù),函數(shù),若的反函數(shù)的圖像經(jīng)過點,則_______.14.在直角坐標系中,直線與直線都經(jīng)過點,若,則直線的一般方程是_____.15.已知,若方程的解集為,則__________.16.已知,向量的夾角為,則的最大值為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知為的三內角,且其對邊分別為.且(1)求的值;(2)若,三角形面積,求的值.18.已知函數(shù)(其中)的圖象如圖所示:(1)求函數(shù)的解析式及其對稱軸的方程;(2)當時,方程有兩個不等的實根,求實數(shù)的取值范圍,并求此時的值.19.已知曲線C:x2+y2+2x+4y+m=1.(1)當m為何值時,曲線C表示圓?(2)若直線l:y=x﹣m與圓C相切,求m的值.20.某地區(qū)2012年至2018年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:年份2012201320142015201620172018年份代號1234567人均純收入2.93.33.64.44.85.25.9(1)已知y與x線性相關,求y關于x的線性回歸方程;(2)利用(1)中的線性回歸方程,預測該地區(qū)2020年農(nóng)村居民家庭人均純收入.(附:線性回歸方程中,,,其中為樣本平均數(shù))21.設是等差數(shù)列,,且成等比數(shù)列.(1)求的通項公式;(2)記的前項和為,求的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由,利用基本不等式,即可求解,得到答案.【詳解】由題意,因為,則,當且僅當,即時等號成立,所以的最小值為,故選A.【點睛】本題主要考查了利用基本不等式求最小值問題,其中解答中合理構造,利用基本不是準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、C【解析】

比較三個數(shù)、、與的大小關系,再利用指數(shù)函數(shù)的單調性可得出、的大小,可得出這三個數(shù)的大小關系.【詳解】,,,,且,函數(shù)為減函數(shù),所以,,即,,因此,,故選C.【點睛】本題考查指數(shù)冪的大小關系,常用的方法有如下幾種:(1)底數(shù)相同,指數(shù)不同,利用同底數(shù)的指數(shù)函數(shù)的單調性來比較大?。唬?)指數(shù)相同,底數(shù)不同,利用同指數(shù)的冪函數(shù)的單調性來比較大?。唬?)底數(shù)和指數(shù)都不相同時,可以利用中間值法來比較大小.3、D【解析】

根據(jù)三角函數(shù)的圖象平移的原則,即左加右減,即可得答案.【詳解】由,可以將函數(shù)圖象向左平移個長度單位即可,故選:D.【點睛】本題考查三角函數(shù)的平移變換,求解時注意平移變換是針對自變量而言的,同時要注意是由誰變換到誰.4、C【解析】

由題意可得抽到的號碼構成以11為首項、以30為公差的等差數(shù)列,求得此等差數(shù)列的通項公式為an=30n﹣19,由401≤30n﹣21≤755,求得正整數(shù)n的個數(shù),即可得出結論.【詳解】∵960÷32=30,∴每組30人,∴由題意可得抽到的號碼構成以30為公差的等差數(shù)列,又某組抽到的號碼為1,可知第一組抽到的號碼為11,∴由題意可得抽到的號碼構成以11為首項、以30為公差的等差數(shù)列,∴等差數(shù)列的通項公式為an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n為正整數(shù)可得14≤n≤25,∴做問卷C的人數(shù)為25﹣14+1=12,故選C.【點睛】本題主要考查等差數(shù)列的通項公式,系統(tǒng)抽樣的定義和方法,根據(jù)系統(tǒng)抽樣的定義轉化為等差數(shù)列是解決本題的關鍵,比較基礎.5、D【解析】試題分析:根據(jù)隨機事件的定義:在相同條件下,可能發(fā)生也可能不發(fā)生的現(xiàn)象(2)是必然發(fā)生的,(3)是不可能發(fā)生的,所以不是隨機事件,故選擇D考點:隨機事件的定義6、C【解析】

先將化為弧度數(shù),再利用扇形面積計算公式即可得出.【詳解】所以扇形的面積為:故選:C【點睛】題考查了扇形面積計算公式,考查了推理能力與計算能力,屬于基礎題.7、B【解析】

利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.8、C【解析】

設等差數(shù)列的前項和為,由并結合等差數(shù)列的下標和性質可得出正確選項.【詳解】設等差數(shù)列的前項和為,由,得,可得,故選:C.【點睛】本題考查等差數(shù)列性質的應用,解題時要充分利用等差數(shù)列下標和與等差中項的性質,可以簡化計算,考查分析問題和解決問題的能力,屬于中等題.9、C【解析】

利用余弦定理求三角形的一個內角的余弦值,可得的值,得到答案.【詳解】在中,因為,即,利用余弦定理可得,又由,所以,故選C.【點睛】本題主要考查了余弦定理的應用,其中解答中根據(jù)題設條件,合理利用余弦定理求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、C【解析】

根據(jù)三角函數(shù)圖像變換的原則,即可得出結果.【詳解】先把函數(shù)的圖象沿軸向右平移個單位,得到;再把圖像上各點的縱坐標不變,橫坐標變?yōu)樵瓉淼模玫?故選C【點睛】本題主要考查三角函數(shù)的圖像變換問題,熟記圖像變換的原則即可,屬于常考題型.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

根據(jù)圓的內接正六邊形的邊長得出弧長,利用弧長公式即可得到圓心角.【詳解】因為圓的內接正六邊形的邊長等于圓的半徑,所以圓弧長所對圓心角的弧度數(shù)為1.故答案為:1【點睛】此題考查弧長公式,根據(jù)弧長求圓心角的大小,關鍵在于熟記圓的內接正六邊形的邊長.12、50【解析】

由分段函數(shù)的表達式,代入計算即可;先求出的表達式,結合分段函數(shù)的性質,求最小值即可.【詳解】由,可得,,所以;由的表達式,可得,當時,,此時,當時,,由二次函數(shù)的性質可知,,綜上,的最小值為0.故答案為:5;0.【點睛】本題考查求函數(shù)值,考查分段函數(shù)的性質,考查函數(shù)最值的計算,考查學生的計算能力,屬于基礎題.13、1【解析】

反函數(shù)圖象過(2,1),等價于原函數(shù)的圖象過(1,2),代點即可求得.【詳解】依題意知:f(x)=lg(x+a)的圖象過(1,2),∴l(xiāng)g(1+a)=2,解得a=1.故答案為:1【點睛】本題考查了反函數(shù),熟記其性質是關鍵,屬基礎題.14、【解析】

點代入的方程求出k,再由求出直線的斜率,即可寫出直線的點斜式方程.【詳解】將點代入直線得,,解得,又,,于是的方程為,整理得.故答案為:【點睛】本題考查直線的方程,屬于基礎題.15、【解析】

將利用輔助角公式化簡,可得出的值.【詳解】,其中,,因此,,故答案為.【點睛】本題考查利用輔助角公式化簡計算,化簡時要熟悉輔助角變形的基本步驟,考查運算求解能力,屬于中等題.16、【解析】

將兩邊平方,化簡后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡得,由基本不等式得,故,即,即,所以的最大值為.【點睛】本小題主要考查平面向量模的運算,考查利用基本不等式求最值,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用正弦定理化簡,并用三角形內角和定理以及兩角和的正弦公式化簡,求得,由此求得的大小.(2)利用三角形的面積公式求得,利用余弦定理列方程,化簡求得的值.【詳解】解:(1),得:∵∴,即∵,∴,∵,∴(2)由(1)有,又由余弦定理得:又,,所以【點睛】本小題主要考查三角形的面積公式,考查正弦定理、余弦定理解三角形,考查運算求解能力,屬于中檔題.18、(1),;(2),.【解析】

(1)根據(jù)圖像得A=2,利用,求ω值,再利用時取到最大值可求φ,從而得到函數(shù)解析式,進而求得對稱軸方程;(2)由得,方程f(x)=2a﹣3有兩個不等實根轉為f(x)的圖象與直線y=2a﹣3有兩個不同的交點,從而可求得a的取值范圍,利用圖像的性質可得的值.【詳解】(1)由圖知,,解得ω=2,f(x)=2sin(2x+φ),當時,函數(shù)取得最大值,可得,即,,解得,又所以,故,令則,所以的對稱軸方程為;(2),所以方程有兩個不等實根時,的圖象與直線有兩個不同的交點,可得,當時,,有,故.【點睛】本題考查由y=Asin(ωx+φ)的部分圖象確定函數(shù)解析式,考查函數(shù)y=Asin(ωx+φ)的圖象及性質的綜合應用,屬于中檔題.19、(1)當m<2時,曲線C表示圓(2)m=±3【解析】解:(1)由C:x2+y2+2x+4y+m=1,得(x+1)2+(y+2)2=2﹣m,由2﹣m>1,得m<2.∴當m<2時,曲線C表示圓;(2)圓C的圓心坐標為(﹣1,﹣2),半徑為.∵直線l:y=x﹣m與圓C相切,∴,解得:m=±3,滿足m<2.∴m=±3.【點評】本題考查圓的一般方程,考查了直線與圓位置關系的應用,訓練了點到直線的距離公式的應用,是基礎題.20、(1);(2)6.8千元.【解析】

(1)由表中數(shù)據(jù)計算、,求出回歸系數(shù),得出關于的線性回歸方程;(2)利用線性回歸方程計算2020年對應時的值,即可得出結論.【詳解】(1)由表中數(shù)據(jù),計算,,,,,,關于的線性回歸方程為:;(2)利用線性回歸方程,計算時,(千元),預測該地區(qū)2020年農(nóng)村居民家庭人均純

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論