高中數(shù)學(xué)教案優(yōu)秀范文10篇_第1頁(yè)
高中數(shù)學(xué)教案優(yōu)秀范文10篇_第2頁(yè)
高中數(shù)學(xué)教案優(yōu)秀范文10篇_第3頁(yè)
高中數(shù)學(xué)教案優(yōu)秀范文10篇_第4頁(yè)
高中數(shù)學(xué)教案優(yōu)秀范文10篇_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第高中數(shù)學(xué)教案優(yōu)秀范文10篇

高中數(shù)學(xué)教案優(yōu)秀范文篇1

教學(xué)目標(biāo):

1.了解復(fù)數(shù)的幾何意義,會(huì)用復(fù)平面內(nèi)的點(diǎn)和向量來(lái)表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.

2.通過(guò)建立復(fù)平面上的點(diǎn)與復(fù)數(shù)的一一對(duì)應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.

教學(xué)重點(diǎn):

復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.

教學(xué)難點(diǎn):

復(fù)數(shù)加減法的幾何意義.

教學(xué)過(guò)程:

一、問(wèn)題情境

我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來(lái)表示.那么,復(fù)數(shù)是否也能用點(diǎn)來(lái)表示呢?

二、學(xué)生活動(dòng)

問(wèn)題1任何一個(gè)復(fù)數(shù)a+bi都可以由一個(gè)有序?qū)崝?shù)對(duì)(a,b)惟一確定,而有序?qū)崝?shù)對(duì)(a,b)與平面直角坐標(biāo)系中的點(diǎn)是一一對(duì)應(yīng)的,那么我們?cè)鯓佑闷矫嫔系狞c(diǎn)來(lái)表示復(fù)數(shù)呢?

問(wèn)題2平面直角坐標(biāo)系中的點(diǎn)A與以原點(diǎn)O為起點(diǎn),A為終點(diǎn)的向量是一一對(duì)應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?

問(wèn)題3任何一個(gè)實(shí)數(shù)都有絕對(duì)值,它表示數(shù)軸上與這個(gè)實(shí)數(shù)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離.任何一個(gè)向量都有模,它表示向量的長(zhǎng)度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對(duì)值)的概念嗎?它又有什么幾何意義呢?

問(wèn)題4復(fù)數(shù)可以用復(fù)平面的向量來(lái)表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎??jī)蓚€(gè)復(fù)數(shù)差的模有什么幾何意義?

三、建構(gòu)數(shù)學(xué)

1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實(shí)部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點(diǎn)Z(a,b),我們可以用點(diǎn)Z(a,b)來(lái)表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.

2.復(fù)平面:建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面.其中x軸為實(shí)軸,y軸為虛軸.實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù).

3.因?yàn)閺?fù)平面上的點(diǎn)Z(a,b)與以原點(diǎn)O為起點(diǎn)、Z為終點(diǎn)的向量一一對(duì)應(yīng),所以我們也可以用向量來(lái)表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.

4.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個(gè)復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個(gè)復(fù)數(shù)對(duì)應(yīng)的兩點(diǎn)間的距離.同時(shí),復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.

四、數(shù)學(xué)應(yīng)用

例1在復(fù)平面內(nèi),分別用點(diǎn)和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.

練習(xí)課本P123練習(xí)第3,4題(口答).

思考

1.復(fù)平面內(nèi),表示一對(duì)共軛虛數(shù)的兩個(gè)點(diǎn)具有怎樣的位置關(guān)系?

2.如果復(fù)平面內(nèi)表示兩個(gè)虛數(shù)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,那么它們的實(shí)部和虛部分別滿足什么關(guān)系?

3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對(duì)應(yīng)的點(diǎn)在虛軸上”的_____條件.

例2已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于第二象限,求實(shí)數(shù)m允許的取值范圍.

例3已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大?。?/p>

思考任意兩個(gè)復(fù)數(shù)都可以比較大小嗎?

例4設(shè)z∈C,滿足下列條件的點(diǎn)Z的集合是什么圖形?

(1)│z│=2;(2)2<│z│<3.

變式:課本P124習(xí)題3.3第6題.

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.復(fù)數(shù)的幾何意義.

2.復(fù)數(shù)加減法的幾何意義.

3.?dāng)?shù)形結(jié)合的思想方法.

高中數(shù)學(xué)教案優(yōu)秀范文篇2

一、課程性質(zhì)與任務(wù)

數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。

數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門(mén)公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。

二、課程教學(xué)目標(biāo)

1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。

2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問(wèn)題能力和數(shù)學(xué)思維能力。

3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。

三、教學(xué)內(nèi)容結(jié)構(gòu)

本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。

2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。

四、教學(xué)內(nèi)容與要求

(一)本大綱教學(xué)要求用語(yǔ)的表述1.認(rèn)知要求(分為三個(gè)層次)

了解:初步知道知識(shí)的含義及其簡(jiǎn)單應(yīng)用。

理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其它相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問(wèn)題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)

計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對(duì)數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢(shì),數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語(yǔ)言描述,或較簡(jiǎn)單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫(huà)出圖形。

分析與解決問(wèn)題能力:能對(duì)工作和生活中的簡(jiǎn)單數(shù)學(xué)相關(guān)問(wèn)題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。

數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對(duì)數(shù)學(xué)及其應(yīng)用問(wèn)題能進(jìn)行有條理的思考、判斷、推理和求解;針對(duì)不同的問(wèn)題(或需求),會(huì)選擇合適的模型(模式)。

(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))

第1單元集合(10學(xué)時(shí))

第2單元不等式(8學(xué)時(shí))

第6單元數(shù)列(10學(xué)時(shí))

第7單元平面向量(矢量)(10學(xué)時(shí))

第8單元直線和圓的方程(18學(xué)時(shí))

第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

2.職業(yè)模塊

第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

高中數(shù)學(xué)教案優(yōu)秀范文篇3

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。

三、設(shè)計(jì)思想

由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

四、教學(xué)目標(biāo)

1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

2.通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

五、教學(xué)重點(diǎn)與難點(diǎn):

教學(xué)重點(diǎn)

1.對(duì)圓錐曲線定義的理解

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程

教學(xué)難點(diǎn):

巧用圓錐曲線定義解題

六、教學(xué)過(guò)程設(shè)計(jì)

【設(shè)計(jì)思路】

(一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題

一上課,我就直截了當(dāng)?shù)亟o出——

例題1:(1)已知a(-2,0),b(2,0)動(dòng)點(diǎn)m滿足|ma|+|mb|=2,則點(diǎn)m的軌跡是()。

(a)橢圓(b)雙曲線(c)線段(d)不存在

(2)已知?jiǎng)狱c(diǎn)m(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)m的軌跡是()。

(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線

【設(shè)計(jì)意圖】

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。

為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

【學(xué)情預(yù)設(shè)】

估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|入手,考慮通過(guò)適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。

高中數(shù)學(xué)教案優(yōu)秀范文篇4

一、教材分析

1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見(jiàn)到的、很普通的一個(gè)空間圖形。“二面角”是人教版《數(shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過(guò)兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究?jī)蓚€(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過(guò)本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

2、教學(xué)目標(biāo):

知識(shí)目標(biāo):

(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問(wèn)題。

(2)進(jìn)一步培養(yǎng)學(xué)生把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的化歸思想。

能力目標(biāo):

(1)突出對(duì)類比、直覺(jué)、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。

(2)通過(guò)對(duì)圖形的觀察、分析、比較和操作來(lái)強(qiáng)化學(xué)生的動(dòng)手操作能力。

德育目標(biāo):

(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)

(2)通過(guò)揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

情感目標(biāo):在平等的教學(xué)氛圍中,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。

3、重點(diǎn)、難點(diǎn):

重點(diǎn):“二面角”和“二面角的平面角”的概念

難點(diǎn):“二面角的平面角”概念的形成過(guò)程

二、教法分析

1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問(wèn)題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。

2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來(lái)輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。

三、學(xué)法指導(dǎo)

1、樂(lè)學(xué):在整個(gè)學(xué)習(xí)過(guò)程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

3、會(huì)學(xué):通過(guò)自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問(wèn)題,更能發(fā)現(xiàn)問(wèn)題。

四、教學(xué)過(guò)程

心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營(yíng)造了創(chuàng)新思維的氛圍。

(一)、二面角

1、揭示概念產(chǎn)生背景。

問(wèn)題情境1、在平面幾何中“角”是怎樣定義的?

問(wèn)題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

問(wèn)題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書(shū)課題)。

通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。

2、展現(xiàn)概念形成過(guò)程。

問(wèn)題情境4、那么,應(yīng)該如何定義二面角呢?

創(chuàng)設(shè)這個(gè)問(wèn)題情境,為學(xué)生創(chuàng)新思維的展開(kāi)提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過(guò)程。教師應(yīng)注意多讓學(xué)生說(shuō),對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。

問(wèn)題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過(guò)實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。

(二)、二面角的平面角

1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說(shuō)明二面角不僅有大小,而且其大小是唯一確定的。平面與平面的位置關(guān)系,總的說(shuō)來(lái)只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來(lái)研究二面角的度量問(wèn)題。

問(wèn)題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來(lái)處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

2、展現(xiàn)概念形成過(guò)程

(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。

問(wèn)題情境7、我們以前碰到過(guò)類似的問(wèn)題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過(guò)的兩種空間角的定義,電腦演示以提高效率。

問(wèn)題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。

問(wèn)題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?

(2)、提出猜想:二面角的大小也可通過(guò)平面的角來(lái)定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。

問(wèn)題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺(jué)思維的結(jié)果。

(3)、探索實(shí)驗(yàn)。通過(guò)實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。

(4)、繼續(xù)探索,得到定義。

問(wèn)題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過(guò)直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

(5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說(shuō)明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。

(三)、二面角及其平面角的畫(huà)法

主要分為直立式和平臥式兩種,用電腦《幾何畫(huà)板》作圖。

(四)、范例分析

為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來(lái)源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來(lái)自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。

例:一張邊長(zhǎng)為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。

分析:涉及二面角的計(jì)算問(wèn)題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角。可讓學(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。

題后反思:(1)解題過(guò)程中必須證明∠BDc是二面角B—AD—c的平面角。

(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

(五)、練習(xí)、小結(jié)與作業(yè)

練習(xí):習(xí)題9.7的第3題

小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。

作業(yè):習(xí)題9.7的第4題

思考題:見(jiàn)例題

五、板書(shū)設(shè)計(jì)(見(jiàn)課件)

以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!

高中數(shù)學(xué)教案優(yōu)秀范文篇5

【教學(xué)目標(biāo)】

1.會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

2.能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

【教學(xué)重難點(diǎn)】

教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

【教學(xué)過(guò)程】

1.情景導(dǎo)入

教師提出問(wèn)題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。

2.展示目標(biāo)、檢查預(yù)習(xí)

3、合作探究、交流展示

(1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說(shuō)出它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。

在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

(1)有兩個(gè)面互相平行;

(2)其余各面都是平行四邊形;

(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問(wèn)題:請(qǐng)列舉身邊的棱柱并對(duì)它們進(jìn)行分類

(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

(5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。

(1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明)

(2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?

(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

(4)棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

5、典型例題

例1:判斷下列語(yǔ)句是否正確。

⑴有一個(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐。

⑵有兩個(gè)面互相平行,其余各面都是梯形,則此幾何體是棱柱。

答案AB

6、課堂檢測(cè):

課本P8,習(xí)題1.1A組第1題。

7.歸納整理

由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

【板書(shū)設(shè)計(jì)】

一、柱、錐、臺(tái)、球的結(jié)構(gòu)

二、例題

例1

變式1、2

【作業(yè)布置】

導(dǎo)學(xué)案課后練習(xí)與提高

1.1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

課前預(yù)習(xí)學(xué)案

一、預(yù)習(xí)目標(biāo):

通過(guò)圖形探究柱、錐、臺(tái)、球的結(jié)構(gòu)特征

二、預(yù)習(xí)內(nèi)容:

閱讀教材第2—6頁(yè)內(nèi)容,然后填空

(1)多面體的概念:叫多面體,

叫多面體的面,叫多面體的棱,

叫多面體的頂點(diǎn)。

①棱柱:兩個(gè)面,其余各面都是,并且每相鄰兩個(gè)四邊形的公共邊都,這些面圍成的幾何體叫作棱柱

②棱錐:有一個(gè)面是,其余各面都是的三角形,這些面圍成的幾何體叫作棱錐

③棱臺(tái):用一個(gè)棱錐底面的平面去截棱錐,,叫作棱臺(tái)。

(2)旋轉(zhuǎn)體的概念:叫旋轉(zhuǎn)體,叫旋轉(zhuǎn)體的軸。

①圓柱:所圍成的幾何體叫做圓柱

②圓錐:所圍成的幾何體叫做圓錐

③圓臺(tái):的部分叫圓臺(tái)

④球的定義

思考:

(1)試分析多面體與旋轉(zhuǎn)體有何去別

(2)球面球體有何去別

(3)圓與球有何去別

三、提出疑惑

同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中

疑惑點(diǎn)疑惑內(nèi)容

高中數(shù)學(xué)教案優(yōu)秀范文篇6

一、教學(xué)目標(biāo):

掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。

二、教學(xué)重點(diǎn):

向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。

三、教學(xué)過(guò)程:

(一)主要知識(shí):

1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。

(二)例題分析:略

四、小結(jié):

1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識(shí)解決有關(guān)應(yīng)用問(wèn)題,

2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問(wèn)題的能力。

五、作業(yè):

高中數(shù)學(xué)教案優(yōu)秀范文篇7

【課題名稱】

《等差數(shù)列》的導(dǎo)入

【授課年級(jí)】

高中二年級(jí)

【教學(xué)重點(diǎn)】

理解等差數(shù)列的概念,能夠運(yùn)用等差數(shù)列的定義判斷一個(gè)數(shù)列是否為等差數(shù)列。

【教學(xué)難點(diǎn)】

等差數(shù)列的性質(zhì)、等差數(shù)列“等差”特點(diǎn)的理解,

【教具準(zhǔn)備】多媒體課件、投影儀

【三維目標(biāo)】

㈠知識(shí)目標(biāo):

了解公差的概念,明確一個(gè)等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)等差數(shù)列是否是一個(gè)等差數(shù)列;

㈡能力目標(biāo):

通過(guò)尋找等差數(shù)列的共同特征,培養(yǎng)學(xué)生的觀察力以及歸納推理的能力;

㈢情感目標(biāo):

通過(guò)對(duì)等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生的觀察、分析資料的能力。

【教學(xué)過(guò)程】

導(dǎo)入新課

師:上兩節(jié)課我們已經(jīng)學(xué)習(xí)了數(shù)列的定義以及給出表示數(shù)列的幾種方法—列舉法、通項(xiàng)法,遞推公式、圖像法。這些方法分別從不同的角度反映了數(shù)列的特點(diǎn)。下面我們觀察以下的幾個(gè)數(shù)列的例子:

(1)我們經(jīng)常這樣數(shù)數(shù),從0開(kāi)始,每個(gè)5個(gè)數(shù)可以得到數(shù)列:0,5,10,15,20,()

(2)2023年,在澳大利亞悉尼舉行的奧運(yùn)會(huì)上,女子舉重被正式列為比賽項(xiàng)目,該項(xiàng)目工設(shè)置了7個(gè)級(jí)別,其中較輕的4個(gè)級(jí)別體重組成的數(shù)列(單位:kg)為48,53,58,63,()試問(wèn)第五個(gè)級(jí)別體重多少?

(3)為了保證優(yōu)質(zhì)魚(yú)類有良好的生活環(huán)境,水庫(kù)管理員定期放水清庫(kù)以清除水庫(kù)中的雜魚(yú)。如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個(gè)數(shù)列:18,15.5,13,10.5,8,(),則第六個(gè)數(shù)應(yīng)為多少?

(4)10072,10144,10216,(),10360

請(qǐng)同學(xué)們回答以上的四個(gè)問(wèn)題

生:第一個(gè)數(shù)列的第6項(xiàng)為25,第二個(gè)數(shù)列的第5個(gè)數(shù)為68,第三個(gè)數(shù)列的第6個(gè)數(shù)為5.5,第四個(gè)數(shù)列的第4個(gè)數(shù)為10288。

師:我來(lái)問(wèn)一下,你是依據(jù)什么得到了這幾個(gè)數(shù)的呢?請(qǐng)以第二個(gè)數(shù)列為例說(shuō)明一下。

生:第二個(gè)數(shù)列的后一項(xiàng)總比前一項(xiàng)多5,依據(jù)這個(gè)規(guī)律我就得到了這個(gè)數(shù)列的第5個(gè)數(shù)為68.

師:說(shuō)的很好!同學(xué)們?cè)僮屑?xì)地觀察一下以上的四個(gè)數(shù)列,看看以上的四個(gè)數(shù)列是否有什么共同特征?請(qǐng)注意,是共同特征。

生1:相鄰的兩項(xiàng)的差都等于同一個(gè)常數(shù)。

師:很好!那作差是否有順序?是否可以顛倒?

生2:作差的順序是后項(xiàng)減去前項(xiàng),不能顛倒!

師:正如生1的總結(jié),這四個(gè)數(shù)列有共同的特征:從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)(即等差)。我們叫這樣的數(shù)列為等差數(shù)列。這就是我們這節(jié)課要研究的內(nèi)容。

推進(jìn)新課

等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差,公差常用字母d表示。從剛才的分析,同學(xué)們應(yīng)該注意公差d一定是由后項(xiàng)減前項(xiàng)。

師:有哪個(gè)同學(xué)知道定義中的關(guān)鍵字是什么?

生2:“從第二項(xiàng)起”和“同一個(gè)常數(shù)”

高中數(shù)學(xué)教案優(yōu)秀范文篇8

一、教學(xué)目標(biāo)

【知識(shí)與技能】

在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

【過(guò)程與方法】

通過(guò)對(duì)方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力得到提高。

【情感態(tài)度與價(jià)值觀】

滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。

二、教學(xué)重難點(diǎn)

【重點(diǎn)】

掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的一般方程。

【難點(diǎn)】

二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。

三、教學(xué)過(guò)程

(一)復(fù)習(xí)舊知,引出課題

1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。

2、提問(wèn)1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學(xué)教案優(yōu)秀范文篇9

[學(xué)習(xí)目標(biāo)]

(1)會(huì)用坐標(biāo)法及距離公式證明Cα+β;

(2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡(jiǎn)單的三角變換,解決求值、化簡(jiǎn)三角式、證明三角恒等式等問(wèn)題。

[學(xué)習(xí)重點(diǎn)]

兩角和與差的正弦、余弦、正切公式

[學(xué)習(xí)難點(diǎn)]

余弦和角公式的推導(dǎo)

[知識(shí)結(jié)構(gòu)]

1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過(guò)程見(jiàn)課本)

2、通過(guò)下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

4、關(guān)于公式的正用、逆用及變用

高中數(shù)學(xué)教案優(yōu)秀范文篇10

教學(xué)目標(biāo):

1.結(jié)合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;

2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

3.并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.

教學(xué)重點(diǎn):

通過(guò)實(shí)例理解分層抽樣的方法.

教學(xué)難點(diǎn):

分層抽樣的步驟.

教學(xué)過(guò)程:

一、問(wèn)題情境

1.復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學(xué)生活動(dòng)

能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.

由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,

所以在各年級(jí)抽取的個(gè)體數(shù)依次是,,,即40,32,28.

三、建構(gòu)數(shù)學(xué)

1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

說(shuō)明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用.

2.三種抽

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論