江蘇南京市鹽城市2022-2023學(xué)年高考數(shù)學(xué)試題模擬卷(一)_第1頁
江蘇南京市鹽城市2022-2023學(xué)年高考數(shù)學(xué)試題模擬卷(一)_第2頁
江蘇南京市鹽城市2022-2023學(xué)年高考數(shù)學(xué)試題模擬卷(一)_第3頁
江蘇南京市鹽城市2022-2023學(xué)年高考數(shù)學(xué)試題模擬卷(一)_第4頁
江蘇南京市鹽城市2022-2023學(xué)年高考數(shù)學(xué)試題模擬卷(一)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇南京市鹽城市2022-2023學(xué)年高考數(shù)學(xué)試題模擬卷(一)注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,雙曲線的左,右焦點分別是直線與雙曲線的兩條漸近線分別相交于兩點.若則雙曲線的離心率為()A. B.C. D.2.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.3.設(shè),則()A. B. C. D.4.已知的內(nèi)角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.5.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個大于2的偶數(shù)都可以寫成兩個質(zhì)數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國數(shù)學(xué)家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.6.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度7.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對稱 B.關(guān)于點對稱C.周期為 D.在上是增函數(shù)8.設(shè)集合(為實數(shù)集),,,則()A. B. C. D.9.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.10.已知函數(shù),若有2個零點,則實數(shù)的取值范圍為()A. B. C. D.11.已知全集為,集合,則()A. B. C. D.12.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對應(yīng)的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,點的坐標為,點是直線:上位于第一象限內(nèi)的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標__________.14.若x,y均為正數(shù),且,則的最小值為________.15.正三棱柱的底面邊長為2,側(cè)棱長為,為中點,則三棱錐的體積為________.16.在平面直角坐標系中,圓.已知過原點且相互垂直的兩條直線和,其中與圓相交于,兩點,與圓相切于點.若,則直線的斜率為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.18.(12分)已知公差不為零的等差數(shù)列的前n項和為,,是與的等比中項.(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項公式.19.(12分)某公司打算引進一臺設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺10000元,乙設(shè)備每臺9000元.此外設(shè)備使用期間還需維修,對于每臺設(shè)備,一年間三次及三次以內(nèi)免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設(shè)備5103050乙設(shè)備05151515(1)設(shè)甲、乙兩種設(shè)備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數(shù)學(xué)期望為決策依據(jù),希望設(shè)備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設(shè)備?請說明理由.20.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.21.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標原點O?若存在,求出k的值;若不存在,請說明理由.22.(10分)已知函數(shù)(1)若,求證:(2)若,恒有,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.2、A【解析】

首先求出樣本空間樣本點為個,再利用分類計數(shù)原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點數(shù),根據(jù)古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復(fù),重復(fù)數(shù)量為,事件的樣本點數(shù)為:個.故不同的樣本點數(shù)為8個,.故選:A【點睛】本題考查了分類計數(shù)原理與分步計數(shù)原理,古典概型的概率計算公式,屬于基礎(chǔ)題3、C【解析】試題分析:,.故C正確.考點:復(fù)合函數(shù)求值.4、B【解析】

延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.5、A【解析】

列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.6、D【解析】

先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.7、D【解析】

當時,,∴f(x)不關(guān)于直線對稱;當時,,∴f(x)關(guān)于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數(shù).本題選擇D選項.8、A【解析】

根據(jù)集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎(chǔ)題.9、A【解析】

由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.10、C【解析】

令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,,令,可得,當時,,函數(shù)在上單調(diào)遞增;當時,,函數(shù)在上單調(diào)遞減.當時,,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計算能力,屬于中檔題.11、D【解析】

對于集合,求得函數(shù)的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數(shù)的定義域,考查解一元二次不等式.12、B【解析】

分別比較復(fù)數(shù)的實部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對應(yīng)的點所在的象限.【詳解】因為時,所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

依題意畫圖,設(shè),根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標.【詳解】解:依題意畫圖,設(shè)以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設(shè),則.解得,則.故答案為:【點睛】本題考查了直線與圓的位置關(guān)系,考查了兩點間的距離公式,點到直線的距離公式,是基礎(chǔ)題.14、4【解析】

由基本不等式可得,則,即可解得.【詳解】方法一:,當且僅當時取等.方法二:因為,所以,所以,當且僅當時取等.故答案為:.【點睛】本題考查基本不等式在求最小值中的應(yīng)用,考查學(xué)生對基本不等式的靈活使用,難度較易.15、【解析】

試題分析:因為正三棱柱的底面邊長為,側(cè)棱長為為中點,所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點:幾何體的體積的計算.16、【解析】

設(shè):,:,利用點到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設(shè)直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【點睛】本題主要考查點到直線的距離公式的運用,并結(jié)合圓的方程,垂徑定理的基本知識,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】

(1)取的中點D,連結(jié),.根據(jù)線面平行的判定定理即得;(2)先證,,和都是平面內(nèi)的直線且交于點,由(1)得,再結(jié)合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結(jié),.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,,.又,平面,平面,平面.【點睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.18、(1);(2).【解析】

(1)根據(jù)題意,建立首項和公差的方程組,通過基本量即可寫出前項和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因為,所以,所以.(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點睛】本題考查等差數(shù)列通項公式和前項和的基本量的求解,涉及利用累加法求通項公式,屬綜合基礎(chǔ)題.19、(1)分布列見解析,分布列見解析;(2)甲設(shè)備,理由見解析【解析】

(1)的可能取值為10000,11000,12000,的可能取值為9000,10000,11000,12000,計算概率得到分布列;(2)計算期望,得到,設(shè)甲、乙兩設(shè)備一年內(nèi)的維修次數(shù)分別為,,計算分布列,計算數(shù)學(xué)期望得到答案.【詳解】(1)的可能取值為10000,11000,12000,,因此的分布如下100001100012000的可能取值為9000,10000,11000,12000,,,因此的分布列為如下9000100001100012000(2)設(shè)甲、乙兩設(shè)備一年內(nèi)的維修次數(shù)分別為,的可能取值為2,3,4,5,,,則的分布列為2345的可能取值為3,4,5,6,,,則的分布列為3456由于,,因此需購買甲設(shè)備【點睛】本題考查了數(shù)學(xué)期望和分布列,意在考查學(xué)生的計算能力和應(yīng)用能力.20、(1)答案見解析.(2)【解析】

(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標系,則,,,,,,,,,,設(shè)平面的一個法向量,則即取,則,,所以,設(shè)平面的一個法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1);(2)存在,當時,以線段為直徑的圓恰好經(jīng)過坐標原點O.【解析】

(1)設(shè)橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點.設(shè)點,,,,將直線的方程代入,化簡,利用韋達定理,結(jié)合向量的數(shù)量積為0,轉(zhuǎn)化為:.求解即可.【詳解】解:(1)設(shè)橢圓的焦半距為c,則由題設(shè),得,解得,所以,故所求橢圓C的方程為(2)存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標原點O.理由如下:設(shè)點,,將直線的方程代入,并整理,得.(*)則,因為以線段為直徑的圓恰好經(jīng)過坐標原點O,所以,即.又,于是,解得,經(jīng)檢驗知:此時(*)式的,符合題意.所以當時,以線段為直徑的圓恰好經(jīng)過坐標原點O【點睛】本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論