版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
有關(guān)北師大版八年級(jí)數(shù)學(xué)教案5篇
北師大版八班級(jí)數(shù)學(xué)精品教案精選篇1
學(xué)問目標(biāo):理解函數(shù)的概念,能精確?????識(shí)別出函數(shù)關(guān)系中的自變量和函數(shù)
力量目標(biāo):會(huì)用變化的量描述事物
情感目標(biāo):回用運(yùn)動(dòng)的觀點(diǎn)觀看事物,分析事物
重點(diǎn):函數(shù)的概念
難點(diǎn):函數(shù)的概念
教學(xué)媒體:多媒體電腦,計(jì)算器
教學(xué)說明:留意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會(huì)確定自變量的取值范圍
教學(xué)設(shè)計(jì):
引入:
信息1:小明在14歲生日時(shí),看到他爸爸為他記錄的以前各年周歲時(shí)體重?cái)?shù)值表,你能看出小明各周歲時(shí)體重是如何變化的嗎?
新課:
問題:(1)如圖是某日的氣溫變化圖。
①這張圖告知我們哪些信息?
②這張圖是怎樣來展現(xiàn)這天各時(shí)刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?
(2)收音機(jī)上的刻度盤的波長(zhǎng)和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對(duì)應(yīng)的數(shù):
①這表告知我們哪些信息?
②這張表是怎樣刻畫波長(zhǎng)和頻率之間的變化規(guī)律的,你能用一個(gè)表達(dá)式表示出來嗎?
一般的,在一個(gè)變化過程中,假如有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有惟一確定的值與其對(duì)應(yīng),那么我們就說x是自變量,y是x的函數(shù)。假如當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。
范例:例1推斷下列變量之間是不是函數(shù)關(guān)系:
(5)長(zhǎng)方形的寬肯定時(shí),其長(zhǎng)與面積;
(6)等腰三角形的底邊長(zhǎng)與面積;
(7)某人的年齡與身高;
活動(dòng)1:閱讀教材7頁觀看1.后完成教材8頁探究,利用計(jì)算器發(fā)覺變量和函數(shù)的關(guān)系
思索:自變量是否可以任意取值
例2一輛汽車的油箱中現(xiàn)有汽油50L,假如不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而削減,平均耗油量為0.1L/km。
(1)寫出表示y與x的函數(shù)關(guān)系式.
(2)指出自變量x的取值范圍.
(3)汽車行駛200km時(shí),油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活動(dòng)2:練習(xí)教材9頁練習(xí)
小結(jié):(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):18頁:2,3,4題
北師大版八班級(jí)數(shù)學(xué)精品教案精選篇2
教學(xué)目的
1.使同學(xué)嫻熟地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2.生疏等邊三角形的性質(zhì)及判定.
2.通過例題教學(xué),關(guān)心同學(xué)總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的方法。
教學(xué)重點(diǎn)
等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn)
簡(jiǎn)潔的規(guī)律推理。
教學(xué)過程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱等邊對(duì)等角。把等腰三角形對(duì)折,折疊兩部分是相互重合的,即AB與AC重合,點(diǎn)B與點(diǎn)C重合,線段BD與CD也重合,所以C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線相互重合,簡(jiǎn)稱三線合一。由于AD為等腰三角形的對(duì)稱軸,所以BD=CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。
2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?
二、新課
在等腰三角形中,有一種特別的狀況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請(qǐng)同學(xué)們畫一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。
2.你能否用已知的學(xué)問,通過推理得到你的猜想是正確的?
等邊三角形是特別的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個(gè)角都等于60。
等邊三角形是軸對(duì)稱圖形嗎?假如是,有幾條對(duì)稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),B=30,求1和ADC的度數(shù)。
分析:由AB=AC,D為BC的中點(diǎn),可知AB為BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。
問題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?
問題2:求1是否還有其它方法?
三、練習(xí)鞏固
1.推斷下列命題,對(duì)的打,錯(cuò)的打。
a.等腰三角形的角平分線,中線和高相互重合()
b.有一個(gè)角是60的等腰三角形,其它兩個(gè)內(nèi)角也為60()
2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是查找其中一個(gè)結(jié)論成立的條件。
五、作業(yè)
1.課本P127─7,9
2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,
EOD的度數(shù)。
(一)課本P127─1、3、4、8題.
北師大版八班級(jí)數(shù)學(xué)精品教案精選篇3
教學(xué)目標(biāo):
【學(xué)問與技能】
1、理解并把握等腰三角形的性質(zhì)。
2、會(huì)用符號(hào)語言表示等腰三角形的性質(zhì)。
3、能運(yùn)用等腰三角形性質(zhì)進(jìn)行證明和計(jì)算。
【過程與方法】
1、通過觀看等腰三角形的對(duì)稱性,進(jìn)展同學(xué)的形象思維。
2、通過實(shí)踐、觀看、證明等腰三角形的性質(zhì),積累數(shù)學(xué)活動(dòng)閱歷,感受數(shù)學(xué)思索過程的條理性,進(jìn)展同學(xué)的合情推理力量。
3、通過運(yùn)用等腰三角形的性質(zhì)解決有關(guān)問題,提高同學(xué)運(yùn)用幾何語言表達(dá)問題的,運(yùn)用學(xué)問和技能解決問題的力量。
【情感態(tài)度】
引導(dǎo)同學(xué)對(duì)圖形的觀看、發(fā)覺,激發(fā)同學(xué)的奇怪???心和求知欲,并在運(yùn)用數(shù)學(xué)學(xué)問解答問題的活動(dòng)中取得勝利的體驗(yàn)。
【教學(xué)重點(diǎn)】
等腰三角形的性質(zhì)及應(yīng)用。
【教學(xué)難點(diǎn)】
等腰三角形的證明。
教學(xué)過程:
一、情境導(dǎo)入,初步熟悉
問題1什么叫等腰三角形?它是一個(gè)軸對(duì)稱圖形嗎?請(qǐng)依據(jù)自己的理解,利用軸對(duì)稱的學(xué)問,自己做一個(gè)等腰三角形。要求同學(xué)獨(dú)立思索,動(dòng)手作圖后再相互溝通評(píng)價(jià)。
可按下列方法做出:
作一條直線l,在l上取點(diǎn)A,在l外取點(diǎn)B,作出點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)C,連接AB,AC,CB,則可得到一個(gè)等腰三角形。
問題2每位同學(xué)請(qǐng)拿出事先預(yù)備好的長(zhǎng)方形紙片,按下圖方式折疊剪裁,再把它綻開,觀看并爭(zhēng)論:得到的△ABC有什么特點(diǎn)?
老師指導(dǎo):上述過程中,剪刀剪過的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。
把剪出的等腰三角形ABC沿折痕對(duì)折,找出其中重合的線段和角。由這些重合的線段和角,你能發(fā)覺等腰三角形的性質(zhì)嗎?說說你的猜想。
在一張白紙上任意畫一個(gè)等腰三角形,把它剪下來,請(qǐng)你試著折一折。你的猜想仍舊成立嗎?
教學(xué)說明:通過同學(xué)的動(dòng)手操作與觀看發(fā)覺,加深同學(xué)對(duì)等腰三角形性質(zhì)的理解。
二、思索探究,獵取新知
老師依據(jù)同學(xué)爭(zhēng)論發(fā)言的狀況,歸納等腰三角形的性質(zhì):
①∠B=∠C→兩個(gè)底角相等。
②BD=CD→AD為底邊BC上的中線。
③∠BAD=∠CAD→AD為頂角∠BAC的平分線。
∠ADB=∠ADC=90°→AD為底邊BC上的高。
指導(dǎo)同學(xué)用語言敘述上述性質(zhì)。
性質(zhì)1等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成:“等邊對(duì)等角”)。
性質(zhì)2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡(jiǎn)記為:“三線合一”)。
老師指導(dǎo)對(duì)等腰三角形性質(zhì)的證明。
1、證明等腰三角形底角的性質(zhì)。
老師要求同學(xué)依據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證。在引導(dǎo)同學(xué)分析思路時(shí)強(qiáng)調(diào):
(1)利用三角形全等來證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個(gè)三角形全等,需要添加幫助線構(gòu)造符合證明要求的兩個(gè)三角形。
(2)添加幫助線的方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。
2、證明等腰三角形“三線合一”的性質(zhì)。
【教學(xué)說明】在證明中,設(shè)計(jì)幫助線是關(guān)鍵,引導(dǎo)同學(xué)用全等的方法去處理,在不同的幫助線作法中,由幫助線帶來的條件是不同的,重視這一點(diǎn),要求同學(xué)板書證明過程,以體會(huì)一題多解帶來的體驗(yàn)。
三、典例精析,把握新知
例如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。
解:∵AB=AC,BD=BC=AD,
∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對(duì)等角)。
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,
從而∠ABC=∠C=∠BDC=2x。
于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°
于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。
【教學(xué)說明】等腰三角形“等邊對(duì)等角”及“三線合一”性質(zhì),可以實(shí)現(xiàn)由邊到角的轉(zhuǎn)化,從而可求出相應(yīng)角的度數(shù)。要在解題過程中,學(xué)會(huì)從簡(jiǎn)單圖形中分解出等腰三角形,用方程思想和數(shù)形結(jié)合思想解決幾何問題。
四、運(yùn)用新知,深化理解
第1組練習(xí):
1、如圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)。
如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標(biāo)出∠B,∠C,∠BAD,∠DAC的度數(shù),指出圖中有哪些相等線段。
2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)。
第2組練習(xí):
1、假如△ABC是軸對(duì)稱圖形,則它肯定是()
A、等邊三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形
2、等腰三角形的一個(gè)外角是100°,它的頂角的度數(shù)是()
A、80°B、20°
C、80°和20°D、80°或50°
3、已知等腰三角形的腰長(zhǎng)比底邊多2cm,并且它的周長(zhǎng)為16cm。求這個(gè)等腰三角形的邊長(zhǎng)。
4、如圖,在△ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。
【教學(xué)說明】
等腰三角形解邊方面的計(jì)算類型較多,引導(dǎo)同學(xué)見識(shí)不同類型,并適時(shí)概括歸納,幫同學(xué)形成解題力量,留意提示同學(xué)分類爭(zhēng)論思想的應(yīng)用。
【答案】
第1組練習(xí)答案:
1、(1)72°;(2)30°
2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD
3、∠B=77°,∠C=38、5°
第2組練習(xí)答案:
1、C
2、C
3、設(shè)三角形的底邊長(zhǎng)為xcm,則其腰長(zhǎng)為(x+2)cm,依據(jù)題意,得2(x+2)+x=16。解得x=4?!嗟妊切蔚娜呴L(zhǎng)為4cm,6cm和6cm。
4、延長(zhǎng)CD交AB的延長(zhǎng)線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC。∴∠P=∠ACD。又∵DE∥AP,∴∠CDE=∠P?!唷螩DE=∠ACD,∴DE=EC。同理可證:AE=DE?!郃E=CE。
四、師生互動(dòng),課堂小結(jié)
這節(jié)課主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)潔的應(yīng)用。請(qǐng)同學(xué)表述性質(zhì),提示每個(gè)同學(xué)要敏捷應(yīng)用它們。
同學(xué)間可溝通體會(huì)與收獲。
北師大版八班級(jí)數(shù)學(xué)精品教案精選篇4
菱形
學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):
1.經(jīng)受探究菱形的識(shí)別方法的過程,在活動(dòng)中培育探究意識(shí)與合作溝通的習(xí)慣;
2.運(yùn)用菱形的識(shí)別方法進(jìn)行有關(guān)推理.
補(bǔ)充例題:
例1.如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.
例2.如圖,平行四邊形ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別交于E、F.
四邊形AFCE是菱形嗎?說明理由.
例3.如圖,ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn)
(1)試說明四邊形AECG是平行四邊形;
(2)若AB=4cm,BC=3cm,求線段EF的長(zhǎng);
(3)當(dāng)矩形兩邊AB、BC具備怎樣的關(guān)系時(shí),四邊形AECG是菱形.
課后續(xù)助:
一、填空題
1.假如四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形
2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點(diǎn),
且DE∥BA,DF∥CA
(1)要使四邊形AFDE是菱形,則要增加條件______________________
(2)要使四邊形AFDE是矩形,則要增加條件______________________
二、解答題
1.如圖,在□ABCD中,若2,推斷□ABCD是矩形還是菱形?并說明理由。
2.如圖,平行四邊形ABCD的兩條對(duì)角線AC,BD相交于點(diǎn)O,OA=4,OB=3,AB=5.
(1)AC,BD相互垂直嗎?為什么?
(2)四邊形ABCD是菱形嗎?
3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問:四邊形ABFE是菱形嗎?請(qǐng)說明理由。
4.如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.
⑴求證:ABF≌
⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試推斷四邊形BMDF的外形,并說明理由.
北師大版八班級(jí)數(shù)學(xué)精品教案精選篇5
一、教學(xué)目標(biāo)
1、熟悉中位數(shù)和眾數(shù),并會(huì)求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。
2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映肯定的數(shù)據(jù)信息,關(guān)心人們?cè)趯?shí)際問題中分析并做出決策。
3、會(huì)利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1、重點(diǎn):熟悉中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表
2、難點(diǎn):利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
3、難點(diǎn)的突破方法:
首先應(yīng)交待清晰中位數(shù)和眾數(shù)意義和作用:
中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動(dòng)對(duì)中位數(shù)沒有影響,中位數(shù)可能消失在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)描述其趨勢(shì)。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)消失次數(shù)較多時(shí),人們往往關(guān)懷的一個(gè)量,眾數(shù)不受極端值的影響,這是它的一個(gè)優(yōu)勢(shì),中位數(shù)的計(jì)算很少不受極端值的影響。
教學(xué)過程中注意雙基,肯定要使同學(xué)能夠很好的把握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個(gè)數(shù)是奇數(shù)還是偶數(shù),假如數(shù)據(jù)個(gè)數(shù)為奇數(shù)則取中間的數(shù),假如數(shù)據(jù)個(gè)數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個(gè)數(shù)據(jù),若幾個(gè)數(shù)據(jù)頻數(shù)都是最多且相同,此時(shí)眾數(shù)就是這多個(gè)數(shù)據(jù)。
在利用中位數(shù)、眾數(shù)分析實(shí)際問題時(shí),應(yīng)依據(jù)詳細(xì)狀況,課堂上老師應(yīng)多舉實(shí)例,使同學(xué)在分析不同實(shí)例中有所體會(huì)。
三、例習(xí)題的意圖分析
1、教材P143的例4的意圖
(1)、這個(gè)問題的討論對(duì)象是一個(gè)樣本,主要是反映了統(tǒng)計(jì)學(xué)中常用到一種解決問題的方法:對(duì)于數(shù)據(jù)較多的討論對(duì)象,我們可以考察總體中的一個(gè)樣本,然后由樣本的討論結(jié)論去估量總體的狀況。
(2)、這個(gè)例題另一個(gè)意圖是交待了當(dāng)數(shù)據(jù)個(gè)數(shù)為偶數(shù)時(shí),中位數(shù)的求法和解題步驟。(由于在前面有介紹中位數(shù)求法,這里不再重述)
(3)、問題2明顯反映學(xué)習(xí)中位數(shù)的意義:它可以估量一個(gè)數(shù)據(jù)占總體的相對(duì)位置,說明中位數(shù)是統(tǒng)計(jì)學(xué)中的一個(gè)重要的數(shù)據(jù)代表。
(4)、這個(gè)例題再一次體現(xiàn)了統(tǒng)計(jì)學(xué)學(xué)問與實(shí)際生活是緊密聯(lián)系的,所以應(yīng)鼓舞同學(xué)學(xué)好這部分學(xué)問。
2、教材P145例5的意圖
(1)、通過例5應(yīng)使同學(xué)明白通常對(duì)待銷售問題我們要討論的是眾數(shù),它代表該型號(hào)的產(chǎn)品銷售,以便給商家合理的建議。
(2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。
四、課堂引入
嚴(yán)格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延長(zhǎng)中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,老師可以一句話引入新課:前面已經(jīng)和同學(xué)們討論過了平均數(shù)的這個(gè)數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今日我們來共同討論和熟悉數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們?cè)诜治鰯?shù)據(jù)過程中又起到怎樣的作用。
五、例習(xí)題的分析
教材P144例4,從所給的數(shù)據(jù)可以看到并沒有根據(jù)從小到大(或從大到小)的挨次排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀看會(huì)發(fā)覺共有12個(gè)數(shù)據(jù),偶數(shù)個(gè)可以取中間的兩個(gè)數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。
教材P145例5,由表中其次行可以查到23.5號(hào)鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤(rùn)提出。
六、隨堂練習(xí)
1某公司銷售部有營(yíng)銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計(jì)了這15個(gè)人的銷售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個(gè)銷售員該月銷量的中位數(shù)和眾數(shù)。
假設(shè)銷售部負(fù)責(zé)人把每位營(yíng)銷員的月銷售定額定為320件,你認(rèn)為合理嗎?假如不合理,請(qǐng)你制定一個(gè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電信行業(yè)薪資調(diào)研報(bào)告
- 旅游行業(yè)前臺(tái)接待工作總結(jié)
- 二年級(jí)班主任期中工作總結(jié)溫馨關(guān)懷成長(zhǎng)陪伴
- 秘書工作的職業(yè)素養(yǎng)培養(yǎng)計(jì)劃
- 公園服務(wù)員工作內(nèi)容
- 銀行柜員服務(wù)工作評(píng)價(jià)
- 2024年筍的秘密教案8篇
- 出賣房屋合同(2篇)
- 第17課 二戰(zhàn)后資本主義的新變化(分層作業(yè))(原卷版)
- 第2單元 古代歐洲文明(A卷·知識(shí)通關(guān)練)(原卷版)
- 2024年度員工試用期勞動(dòng)合同模板(含保密條款)3篇
- 2024-2030年全球與中國(guó)汽車音頻DSP芯片組市場(chǎng)銷售前景及競(jìng)爭(zhēng)策略分析報(bào)告
- 機(jī)關(guān)事業(yè)單位財(cái)務(wù)管理制度(六篇)
- 2025禮品定制合同范本
- 醫(yī)院消毒隔離制度范文(2篇)
- 2024年01月11026經(jīng)濟(jì)學(xué)(本)期末試題答案
- 烘干煤泥合同范例
- 人教版六年級(jí)上冊(cè)數(shù)學(xué)第八單元數(shù)學(xué)廣角數(shù)與形單元試題含答案
- 2025年“三基”培訓(xùn)計(jì)劃
- 第20課 北洋軍閥統(tǒng)治時(shí)期的政治、經(jīng)濟(jì)與文化 教案
- 住房公積金稽核審計(jì)工作方案例文(4篇)
評(píng)論
0/150
提交評(píng)論