版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省咸寧市重點中學2022-2023學年高三下學期期中聯考考試數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,,若存在實數,使成立,則正數的取值范圍為()A. B. C. D.2.設是虛數單位,則“復數為純虛數”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件3.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內切圓半徑為()A. B. C. D.4.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.5.已知定義在R上的偶函數滿足,當時,,函數(),則函數與函數的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.66.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側棱,,的中點.若在三棱錐內,且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.7.已知函數,,則的極大值點為()A. B. C. D.8.已知函數在上單調遞增,則的取值范圍()A. B. C. D.9.函數y=sin2x的圖象可能是A. B.C. D.10.如圖所示的“數字塔”有以下規(guī)律:每一層最左與最右的數字均為2,除此之外每個數字均為其兩肩的數字之積,則該“數字塔”前10層的所有數字之積最接近()A. B. C. D.11.已知函數(,)的一個零點是,函數圖象的一條對稱軸是直線,則當取得最小值時,函數的單調遞增區(qū)間是()A.() B.()C.() D.()12.設函數滿足,則的圖像可能是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線交于點,則長度的最大值為____.14.在平面直角坐標系中,已知圓及點,設點是圓上的動點,在中,若的角平分線與相交于點,則的取值范圍是_______.15.已知數列為等差數列,數列為等比數列,滿足,其中,,則的值為_______________.16.設,若關于的方程有實數解,則實數的取值范圍_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,(Ⅰ)當時,證明;(Ⅱ)已知點,點,設函數,當時,試判斷的零點個數.18.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.19.(12分)已知函數.(1)當時,解不等式;(2)設不等式的解集為,若,求實數的取值范圍.20.(12分)已知函數,.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.21.(12分)在直角坐標系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側)滿足,且的周長為,求的值.22.(10分)2019年入冬時節(jié),長春市民為了迎接2022年北京冬奧會,增強身體素質,積極開展冰上體育鍛煉.現從速滑項目中隨機選出100名參與者,并由專業(yè)的評估機構對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統(tǒng)計,請將下列列聯表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據實數滿足的等量關系,代入后將方程變形,構造函數,并由導函數求得的最大值;由基本不等式可求得的最小值,結合存在性問題的求法,即可求得正數的取值范圍.【詳解】函數,,由題意得,即,令,∴,∴在上單調遞增,在上單調遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數在求函數最值中的應用,由基本不等式求函數的最值,存在性成立問題的解法,屬于中檔題.2、D【解析】
結合純虛數的概念,可得,再結合充分條件和必要條件的定義即可判定選項.【詳解】若復數為純虛數,則,所以,若,不妨設,此時復數,不是純虛數,所以“復數為純虛數”是“”的充分不必要條件.故選:D【點睛】本題考查充分條件和必要條件,考查了純虛數的概念,理解充分必要條件的邏輯關系是解題的關鍵,屬于基礎題.3、B【解析】
首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設的內切圓的半徑為,則,故選:B【點睛】本題考查雙曲線的定義、方程和性質,考查三角形的內心的概念,考查了轉化的思想,屬于中檔題.4、D【解析】
以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設,則,.設平面的法向量為,則取,得.設直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點睛】本題考查了向量法求解線面角,考查了學生空間想象,邏輯推理,數學運算的能力,屬于中檔題.5、B【解析】
由函數的性質可得:的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,由函數圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數滿足,可得的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,函數的圖像與函數()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數的性質,考查了數形結合的思想,掌握函數的性質是解題的關鍵,屬于中檔題.6、D【解析】
如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學生的計算能力和空間想象能力.7、A【解析】
求出函數的導函數,令導數為零,根據函數單調性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調遞增,在單調遞減,在單調遞增,故的極大值點為.故選:A.【點睛】本題考查利用導數求函數的極值點,屬基礎題.8、B【解析】
由,可得,結合在上單調遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.9、D【解析】分析:先研究函數的奇偶性,再研究函數在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數,排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數圖象的識別問題的常見題型及解題思路:(1)由函數的定義域,判斷圖象的左、右位置,由函數的值域,判斷圖象的上、下位置;(2)由函數的單調性,判斷圖象的變化趨勢;(3)由函數的奇偶性,判斷圖象的對稱性;(4)由函數的周期性,判斷圖象的循環(huán)往復.10、A【解析】
結合所給數字特征,我們可將每層數字表示成2的指數的形式,觀察可知,每層指數的和成等比數列分布,結合等比數列前項和公式和對數恒等式即可求解【詳解】如圖,將數字塔中的數寫成指數形式,可發(fā)現其指數恰好構成“楊輝三角”,前10層的指數之和為,所以原數字塔中前10層所有數字之積為.故選:A【點睛】本題考查與“楊輝三角”有關的規(guī)律求解問題,邏輯推理,等比數列前項和公式應用,屬于中檔題11、B【解析】
根據函數的一個零點是,得出,再根據是對稱軸,得出,求出的最小值與對應的,寫出即可求出其單調增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因為,所以().又,所以,所以,令(),則().因此,當取得最小值時,的單調遞增區(qū)間是().故選:B【點睛】此題考查三角函數的對稱軸和對稱點,在對稱軸處取得最值,對稱點處函數值為零,屬于較易題目.12、B【解析】根據題意,確定函數的性質,再判斷哪一個圖像具有這些性質.由得是偶函數,所以函數的圖象關于軸對稱,可知B,D符合;由得是周期為2的周期函數,選項D的圖像的最小正周期是4,不符合,選項B的圖像的最小正周期是2,符合,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關系;考查數形結合思想和運算求解能力;根據圓的定義得到交點在以為直徑的圓上是求解本題的關鍵;屬于中檔題.14、【解析】
由角平分線成比例定理推理可得,進而設點表示向量構建方程組表示點P坐標,代入圓C方程即可表示動點Q的軌跡方程,再由將所求視為該圓上的點與原點間的距離,所以其最值為圓心到原點的距離加減半徑.【詳解】由題可構建如圖所示的圖形,因為AQ是的角平分線,由角平分線成比例定理可知,所以.設點,點,即,則,所以.又因為點是圓上的動點,則,故點Q的運功軌跡是以為圓心為半徑的圓,又即為該圓上的點與原點間的距離,因為,所以故答案為:【點睛】本題考查與圓有關的距離的最值問題,常常轉化到圓心的距離加減半徑,還考查了求動點的軌跡方程,屬于中檔題.15、【解析】
根據題意,判斷出,根據等比數列的性質可得,再令數列中的,,,根據等差數列的性質,列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數列中的,,,根據等差數列的性質,可得,所以.②根據①②得出,.所以.故答案為.【點睛】本題主要考查等差數列、等比數列的性質,屬于基礎題.16、【解析】
先求出,從而得函數在區(qū)間上為增函數;在區(qū)間為減函數.即可得的最大值為,令,得函數取得最小值,由有實數解,,進而得實數的取值范圍.【詳解】解:,當時,;當時,;函數在區(qū)間上為增函數;在區(qū)間為減函數.所以的最大值為,令,所以當時,函數取得最小值,又因為方程有實數解,那么,即,所以實數的取值范圍是:.故答案為:【點睛】本題考查了函數的單調性,函數的最值問題,導數的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當時,討論的零點個數即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當時,可知,∴∴,,∴.∴在單調遞增,,.∴在上有一個零點,②當時,,,∴,∴在恒成立,∴在無零點.③當時,,.∴在單調遞減,,.∴在存在一個零點.綜上,的零點個數為1..【點睛】本題考查了利用導數解決函數零點問題,考查了分類討論思想,屬于壓軸題.18、(1)(2)【解析】
分析:(1)利用正弦定理以及誘導公式與和角公式,結合特殊角的三角函數值,求得角C;(2)運用向量的平方就是向量模的平方,以及向量數量積的定義,結合基本不等式,求得的最大值,再由三角形的面積公式計算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點,則,在中,,(注:也可將兩邊平方)即,,所以,當且僅當時取等號.此時,其最大值為.點睛:該題考查的是有關三角形的問題,涉及到的知識點有正弦定理,誘導公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過程中,需要正確使用相關的公式進行運算即可求得結果.19、(1)或;(2)【解析】
(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結果.(2)利用等價轉化的思想,可得不等式在恒成立,然后解出解集,根據集合間的包含關系,可得結果.【詳解】(1)當時,原不等式可化為.①當時,則,所以;②當時,則,所以;⑧當時,則,所以.綜上所述:當時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數的取值范圍是.【點睛】本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應用,同時掌握等價轉化的思想,屬中檔題.20、(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導數,判斷在區(qū)間上的單調性,然后再證異號,即可證明結論;(2)當時,不等式恒成立,分離參數只需時,恒成立,設(),需,根據(1)中的結論先求出,再構造函數結合導數法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數,則,所以在區(qū)間上是增函數.又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當時,;當時,恒成立,設(),所以.由(1)可知,,使,所以,當時,,當時,,由此在區(qū)間上單調遞減,在區(qū)間上單調遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數,所以,故.【點睛】本題考查導數的綜合應用,涉及到函數的單調性、函數的零點、極值最值、不等式的證明,分離參數是解題的關鍵,意在考查邏輯推理、數學計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《保險金融行業(yè)模板》課件
- 《認識計算機軟》課件
- 干酪性鼻炎的健康宣教
- 創(chuàng)傷性肩關節(jié)前脫位的健康宣教
- 《Java程序設計及移動APP開發(fā)》課件-第04章
- 陰吹的健康宣教
- 刺胞皮炎的臨床護理
- 糖代謝紊亂的臨床護理
- 孕期牙齒松動的健康宣教
- 汗腺瘤的臨床護理
- 新人教版三年級上冊數學 總復習 教學課件
- 骨科手術同意書實用模板
- 耳鼻咽喉科臨床診療指南
- (二)防觸電技術
- 董事會戰(zhàn)略委員會工作細則
- 實訓報告---配置-Hyper-V-服務實訓
- 2022年江蘇省衛(wèi)生系統(tǒng)事業(yè)單位招聘考試(臨床)參考題庫匯總(含答案)
- 場發(fā)射掃描電鏡介紹
- 蘇教版四年級上冊科學期末試卷(含答案)
- 啤酒游戲(完全操作版)
- 變更戶主情況登記表
評論
0/150
提交評論