版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為()A.B.C.D.2.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結論:①若C,O兩點關于AB對稱,則OA=;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④3.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°4.如圖,某地修建高速公路,要從A地向B地修一條隧道(點A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機從A地出發(fā),垂直上升800米到達C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米5.如圖,數(shù)軸上的A、B、C、D四點中,與數(shù)﹣表示的點最接近的是()A.點A B.點B C.點C D.點D6.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個標志中,是軸對稱圖形的是()A. B. C. D.7.據(jù)統(tǒng)計,2018年全國春節(jié)運輸人數(shù)約為3000000000人,將3000000000用科學記數(shù)法表示為()A.0.3×1010B.3×109C.30×108D.300×1078.下面運算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|9.已知x1,x2是關于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣310.如圖,四邊形ABCD內接于⊙O,F(xiàn)是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為()A.45° B.50° C.55° D.60°二、填空題(共7小題,每小題3分,滿分21分)11.將一次函數(shù)的圖象平移,使其經(jīng)過點(2,3),則所得直線的函數(shù)解析式是______.12.已知,且,則的值為__________.13.因式分解:(a+1)(a﹣1)﹣2a+2=_____.14.如圖,等邊三角形的頂點A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,如果這樣連續(xù)經(jīng)過2018次變換后,等邊△ABC的頂點C的坐標為_____.15.如圖,數(shù)軸上點A所表示的實數(shù)是________________.16.如圖,已知,D、E分別是邊AB、AC上的點,且設,,那么______用向量、表示17.如果點A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E為的中點.求證:∠ACD=∠DEC;(2)延長DE、CB交于點P,若PB=BO,DE=2,求PE的長19.(5分)在平面直角坐標系xOy中,若拋物線頂點A的橫坐標是,且與y軸交于點,點P為拋物線上一點.求拋物線的表達式;若將拋物線向下平移4個單位,點P平移后的對應點為如果,求點Q的坐標.20.(8分)如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.(1)求A,B兩點間的距離(結果精確到0.1km).(2)當運載火箭繼續(xù)直線上升到D處,雷達站測得其仰角為56°,求此時雷達站C和運載火箭D兩點間的距離(結果精確到0.1km).(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.1.)21.(10分)如圖,把兩個邊長相等的等邊△ABC和△ACD拼成菱形ABCD,點E、F分別是CB、DC延長上的動點,且始終保持BE=CF,連結AE、AF、EF.求證:AEF是等邊三角形.22.(10分)如圖,某次中俄“海上聯(lián)合”反潛演習中,我軍艦A測得潛艇C的俯角為30°.位于軍艦A正上方1000米的反潛直升機B側得潛艇C的俯角為68°.試根據(jù)以上數(shù)據(jù)求出潛艇C離開海平面的下潛深度.(結果保留整數(shù).參考數(shù)據(jù):sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)23.(12分)為響應國家的“一帶一路”經(jīng)濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.抽查D廠家的零件為件,扇形統(tǒng)計圖中D廠家對應的圓心角為;抽查C廠家的合格零件為件,并將圖1補充完整;通過計算說明合格率排在前兩名的是哪兩個廠家;若要從A、B、C、D四個廠家中,隨機抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.24.(14分)某汽車專賣店銷售A,B兩種型號的汽車.上周銷售額為96萬元:本周銷售額為62萬元,銷售情況如下表:A型汽車B型汽車上周13本周21(1)求每輛A型車和B型車的售價各為多少元(2)甲公司擬向該店購買A,B兩種型號的汽車共6輛,購車費不少于130萬元,且不超過140萬元,則有哪幾種購車方案?哪種購車方案花費金額最少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】解:當點Q在AC上時,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當點Q在BC上時,如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點睛:本題考查動點問題的函數(shù)圖象,有一定難度,解題關鍵是注意點Q在BC上這種情況.2、D【解析】分析:①先根據(jù)直角三角形30°的性質和勾股定理分別求AC和AB,由對稱的性質可知:AB是OC的垂直平分線,所以
②當OC經(jīng)過AB的中點E時,OC最大,則C、O兩點距離的最大值為4;
③如圖2,當∠ABO=30°時,易證四邊形OACB是矩形,此時AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點共圓可知:A、C、B、O四點共圓,則AB為直徑,由垂徑定理相關推論:平分弦(不是直徑)的直徑垂直于這條弦,但當這條弦也是直徑時,即OC是直徑時,AB與OC互相平分,但AB與OC不一定垂直;
④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進行計算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點關于AB對稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點為E,連接OE、CE,∵∴當OC經(jīng)過點E時,OC最大,則C.O兩點距離的最大值為4;所以②正確;③如圖2,當時,∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點D運動路徑是:以O為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點睛:屬于三角形的綜合體,考查了直角三角形的性質,直角三角形斜邊上中線的性質,軸對稱的性質,弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.3、C【解析】
根據(jù)非負數(shù)的性質可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內角和定理可得出∠C的度數(shù).【詳解】由題意,得
cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故選C.4、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點睛】本題考查解直角三角形的應用﹣仰角俯角問題,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.5、B【解析】
,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.6、D【解析】
根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).【詳解】解:根據(jù)科學計數(shù)法的定義可得,3000000000=3×109,故選擇B.【點睛】本題考查了科學計數(shù)法的定義,確定n的值是易錯點.8、D【解析】
分別利用整數(shù)指數(shù)冪的性質以及合并同類項以及積的乘方運算、絕對值的性質分別化簡求出答案.【詳解】解:A,,故此選項錯誤;B,,故此選項錯誤;C,,故此選項錯誤;D,,故此選項正確.所以D選項是正確的.【點睛】靈活運用整數(shù)指數(shù)冪的性質以及合并同類項以及積的乘方運算、絕對值的性質可以求出答案.9、A【解析】
根據(jù)一元二次方程根與系數(shù)的關系和整體代入思想即可得解.【詳解】∵x1,x2是關于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點睛】本題主要考查一元二次方程的根與系數(shù)的關系(韋達定理),韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,那么x1+x2=-ba,x1x2=10、B【解析】
先根據(jù)圓內接四邊形的性質求出∠ADC的度數(shù),再由圓周角定理得出∠DCE的度數(shù),根據(jù)三角形外角的性質即可得出結論.【詳解】∵四邊形ABCD內接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【點睛】本題考查圓內接四邊形的性質,圓周角定理.圓內接四邊形對角互補.在同圓或等圓中,同弧或等弧所對的圓心角相等,而同弧所對的圓周角等于圓心角的一半,所以在同圓或等圓中,同弧或等弧所對的圓周角相等.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:解:設y=x+b,∴3=2+b,解得:b=1.∴函數(shù)解析式為:y=x+1.故答案為y=x+1.考點:一次函數(shù)點評:本題要注意利用一次函數(shù)的特點,求出未知數(shù)的值從而求得其解析式,求直線平移后的解析式時要注意平移時k的值不變.12、1【解析】分析:直接利用已知比例式假設出a,b,c的值,進而利用a+b-2c=6,得出答案.詳解:∵,∴設a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案為1.點睛:此題主要考查了比例的性質,正確表示出各數(shù)是解題關鍵.13、(a﹣1)1.【解析】
提取公因式(a?1),進而分解因式得出答案.【詳解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案為:(a﹣1)1.【點睛】此題主要考查了提取公因式法分解因式,找出公因式是解題關鍵.14、(﹣2016,+1)【解析】
據(jù)軸對稱判斷出點C變換后在x軸上方,然后求出點C縱坐標,再根據(jù)平移的距離求出點A變換后的橫坐標,最后寫出即可.【詳解】解:∵△ABC是等邊三角形AB=3﹣1=2,∴點C到x軸的距離為1+2×=+1,橫坐標為2,∴C(2,+1),第2018次變換后的三角形在x軸上方,點C的縱坐標為+1,橫坐標為2﹣2018×1=﹣2016,所以,點C的對應點C′的坐標是(﹣2016,+1)故答案為:(﹣2016,+1)【點睛】本題考查坐標與圖形變化,平移和軸對稱變換,等邊三角形的性質,讀懂題目信息,確定出連續(xù)2018次這樣的變換得到三角形在x軸上方是解題的關鍵.15、【解析】
A點到-1的距離等于直角三角形斜邊的長度,應用勾股定理求解出直角三角形斜邊長度即可.【詳解】解:直角三角形斜邊長度為,則A點到-1的距離等于,則A點所表示的數(shù)為:﹣1+【點睛】本題考查了利用勾股定理求解數(shù)軸上點所表示的數(shù).16、【解析】
在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的運算可得出結果.【詳解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案為.【點睛】本題考查了相似三角形的判定和性質以及向量的運算.17、1【解析】
根據(jù)函數(shù)值相等兩點關于對稱軸對稱,可得答案.【詳解】由點A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為:1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,利用函數(shù)值相等兩點關于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)PE=4.【解析】
(1)根據(jù)同角的余角相等得到∠ACD=∠B,然后由圓周角定理可得結論;(2)連結OE,根據(jù)圓周角定理和等腰三角形的性質證明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.【詳解】解:(1)證明:∵BC是⊙O的直徑,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)證明:連結OE∵E為BD弧的中點.∴∠DCE=∠BCE∵OC=OE∴∠BCE=∠OEC∴∠DCE=∠OEC∴OE∥CD∴△POE∽△PCD,∴∵PB=BO,DE=2∴PB=BO=OC∴∴∴PE=4【點睛】本題是圓的綜合題,主要考查了圓周角定理、等腰三角形的判定和性質、相似三角形的判定與性質,熟練掌握圓的相關知識和相似三角形的性質是解題的關鍵.19、為;點Q的坐標為或.【解析】
依據(jù)拋物線的對稱軸方程可求得b的值,然后將點B的坐標代入線可求得c的值,即可求得拋物線的表達式;由平移后拋物線的頂點在x軸上可求得平移的方向和距離,故此,然后由點,軸可得到點Q和P關于x對稱,可求得點Q的縱坐標,將點Q的縱坐標代入平移后的解析式可求得對應的x的值,則可得到點Q的坐標.【詳解】拋物線頂點A的橫坐標是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個單位.平移后拋物線的解析式為,.,點O在PQ的垂直平分線上.又軸,點Q與點P關于x軸對稱.點Q的縱坐標為.將代入得:,解得:或.點Q的坐標為或.【點睛】本題主要考查的是二次函數(shù)的綜合應用,解答本題主要應用了待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的平移規(guī)律、線段垂直平分線的性質,發(fā)現(xiàn)點Q與點P關于x軸對稱,從而得到點Q的縱坐標是解題的關鍵.20、(1)1.7km;(2)8.9km;【解析】
(1)根據(jù)銳角三角函數(shù)可以表示出OA和OB的長,從而可以求得AB的長;(2)根據(jù)銳角三角函數(shù)可以表示出CD,從而可以求得此時雷達站C和運載火箭D兩點間的距離.【詳解】解:(1)由題意可得,∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,∴AO=OC?tan34°,BO=OC?tan45°,∴AB=OB﹣OA=OC?tan45°﹣OC?tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,即A,B兩點間的距離是1.7km;(2)由已知可得,∠DOC=90°,OC=5km,∠DCO=56°,∴cos∠DCO=即∵sin34°=cos56°,∴解得,CD≈8.9答:此時雷達站C和運載火箭D兩點間的距離是8.9km.【點睛】本題考查解直角三角形的應用﹣仰角俯角問題,解答本題的關鍵是明確題意,利用數(shù)形結合的思想和銳角三角函數(shù)解答.21、見解析【解析】分析:由等邊三角形的性質即可得出∠ABE=∠ACF,由全等三角形的性質即可得出結論.詳解:證明:∵△ABC和△ACD均為等邊三角形∴AB=AC,∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°,∵BE=CF,∴△ABE≌△ACF,∴AE=AF,∴∠EAB=∠FAC,∴∠EAF=∠BAC=60°,∴△AEF是等邊三角形.點睛:此題是四邊形綜合題,主要考查了等邊三角形的性質和全等三角形的判定和性質,直角三角形的性質,相似三角形的判定和性質,解題關鍵是判斷出△ABE≌△ACF.22、潛艇C離開海平面的下潛深度約為308米【解析】試題分析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,用銳角三角函數(shù)分別在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之間的關系列出方程求解.試題解析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,根據(jù)題意得:∠ACD=30°,∠BCD=68°,設AD=x,則BD=BA+AD=1000+x,在Rt△ACD中,CD===在Rt△BCD中,BD=CD?tan68°,∴325+x=?tan68°解得:x≈100米,∴潛艇C離開海平面的下潛深度為100米.點睛:本題考查了解直角三角形的應用,解題的關鍵是作出輔助線,從題目中找出直角三角形并選擇合適的邊角關系求解.HYPERLINK"/console//media/Ods976i1k3C_bMC0oD1SoUBQXxTmsHgr9YH4LxsFpwjAr3U3N1N843017HA7wVDeQX1YWb87YBpHI5DRcGFZ3xDOiGNe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語外貿大學南國商學院《房地產(chǎn)會計》2023-2024學年第一學期期末試卷
- 廣東司法警官職業(yè)學院《教學設計案例分析》2023-2024學年第一學期期末試卷
- 廣東食品藥品職業(yè)學院《材料化學合成與制備》2023-2024學年第一學期期末試卷
- 廣東輕工職業(yè)技術學院《城市地理信息系統(tǒng)》2023-2024學年第一學期期末試卷
- 七年級上冊《6.3.1角的概念》課件與作業(yè)
- 廣東南華工商職業(yè)學院《現(xiàn)代電子技術綜合設計》2023-2024學年第一學期期末試卷
- 廣東梅州職業(yè)技術學院《企業(yè)運營管理課程設計》2023-2024學年第一學期期末試卷
- 二班小學二年級少先隊工作計劃-指導思想
- 人教版歷史必修3第一單元《中國傳統(tǒng)文化主流思想的演變》測試題
- 《XX戰(zhàn)略講稿》課件
- 數(shù)學-2025年高考綜合改革適應性演練(八省聯(lián)考)
- 市場營銷試題(含參考答案)
- 2024年醫(yī)療器械經(jīng)營質量管理規(guī)范培訓課件
- 景區(qū)旅游安全風險評估報告
- 2023年新高考(新課標)全國2卷數(shù)學試題真題(含答案解析)
- 事業(yè)單位工作人員獎勵審批表
- 凱普21種基因型HPV分型與其它比較
- 小學數(shù)學小專題講座《數(shù)學教學生活化 》(課堂PPT)
- 雞場養(yǎng)殖情況記錄登記表
- 高壓配電柜系列產(chǎn)品出廠檢驗規(guī)范
- 節(jié)流孔板孔徑計算
評論
0/150
提交評論