版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.若,,則下列結(jié)論正確的是()A. B.C. D.2.已知函數(shù)是R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是()A. B.C. D.3.設(shè)且,若對恒成立,則a的取值范圍是()A. B.C. D.4.已知點P(cosα,sinα),Q(cosβ,sinβ),則的最大值是()A. B.2C.4 D.5.已知向量,,則在方向上的投影為A. B.8C. D.6.下列每組函數(shù)是同一函數(shù)的是()A. B.C. D.7.若a2+b2=2c2(c≠0),則直線ax+by+c=0被圓x2+y2=1所截得的弦長為A. B.1C. D.8.設(shè),表示兩條直線,,表示兩個平面,則下列命題正確的是A.若,,則 B.若,,則C.若,,則 D.若,,則9.已知函數(shù)是定義域為R的偶函數(shù),且在上單調(diào)遞減,則不等式的解集為A. B.C. D.10.直線與圓交點的個數(shù)為A.2個 B.1個C.0個 D.不確定11.如圖,向量,,的起點與終點均在正方形網(wǎng)格的格點上,若,則()A. B.C.2 D.412.若函數(shù)在R上單調(diào)遞減,則實數(shù)a的取值范圍是()A. B.C. D.二、填空題(本大題共4小題,共20分)13.要在半徑cm的圓形金屬板上截取一塊扇形板,使弧AB的長為m,那么圓心角_________.(用弧度表示)14.函數(shù)的值域是____.15.設(shè)一扇形的弧長為4cm,面積為4cm2,則這個扇形的圓心角的弧度數(shù)是_____.16.設(shè)扇形的周長為,面積為,則扇形的圓心角的弧度數(shù)是________三、解答題(本大題共6小題,共70分)17.已知函數(shù),.(1)若的定義域為,求實數(shù)的取值范圍;(2)若,函數(shù)為奇函數(shù),且對任意,存在,使得,求實數(shù)的取值范圍.18.已知函數(shù).(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并說明理由;(3)若函數(shù),求函數(shù)零點.19.如圖,在四棱錐中,底面是菱形,,且側(cè)面平面,點是的中點(1)求證:(2)若,求證:平面平面20.已知函數(shù)(1)用函數(shù)奇偶性的定義證明是奇函數(shù);(2)用函數(shù)單調(diào)性的定義證明在區(qū)間上是增函數(shù);(3)解不等式21.已知函數(shù)(1)求函數(shù)的最小正周期;(2)求函數(shù)的對稱軸和對稱中心;(3)若,,求的值22.已知向量,,設(shè)函數(shù)Ⅰ求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;Ⅱ求函數(shù)在區(qū)間的最大值和最小值
參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】根據(jù)不等式的性質(zhì),逐一分析選項,即可得答案.【詳解】對于A:因為,所以,因為,所以,故A錯誤;對于B:因為,所以,且,所以,故B錯誤;對于C:因為,所以,又,所以,故C正確;對于D:因為,,所以,所以,故D錯誤.故選:C2、B【解析】可知分段函數(shù)在R上單調(diào)遞增,只需要每段函數(shù)單調(diào)遞增且在臨界點處的函數(shù)值左邊小于等于右邊,列出不等式即可【詳解】可知函數(shù)在R上單調(diào)遞增,所以;對稱軸,即;臨界點處,即;綜上所述:故選:B3、C【解析】分,,作與的圖象分析可得.【詳解】當(dāng)時,由函數(shù)與的圖象可知不滿足題意;當(dāng)時,函數(shù)單調(diào)遞減,由圖知,要使對恒成立,只需滿足,得.故選:C注意事項:
用黑色墨水的鋼筆或簽字筆將答案寫在答題卡上.
本卷共9題,共60分.4、B【解析】,則,則的最大值是2,故選B.5、D【解析】依題意有投影為.6、C【解析】依次判斷每組函數(shù)的定義域和對應(yīng)法則是否相同,可得選項.【詳解】A.的定義域為,的定義城為,定義域不同,故A錯誤;B.的定義域為,的定義域為,定義域不同,故B錯誤;C.與的定義域都為,,對應(yīng)法則相同,故C正確;D.的定義域為,的定義域為,定義域不同,故D錯誤;故選:C【點睛】易錯點睛:本題考查判斷兩個函數(shù)是否是同一函數(shù),判斷時,注意考慮函數(shù)的定義域和對應(yīng)法則是否完全相同,屬于基礎(chǔ)題.7、D【解析】因為,所以設(shè)弦長為,則,即.考點:本小題主要考查直線與圓的位置關(guān)系——相交.8、D【解析】對選項進行一一判斷,選項D為面面垂直判定定理.【詳解】對A,與可能異面,故A錯;對B,可能在平面內(nèi);對C,與平面可能平行,故C錯;對D,面面垂直判定定理,故選D.【點睛】本題考查空間中線、面位置關(guān)系,判斷一個命題為假命題,只要能舉出反例即可.9、D【解析】本題首先可以根據(jù)函數(shù)是定義域為R的偶函數(shù)判斷出函數(shù)的對稱軸,然后通過在上單調(diào)遞減判斷出函數(shù)在上的單調(diào)性,最后根據(jù)即可列出不等式并解出答案【詳解】因為函數(shù)是定義域為R的偶函數(shù),所以函數(shù)關(guān)于軸對稱,即函數(shù)關(guān)于對稱,因為函數(shù)在上單調(diào)遞減,所以函數(shù)在上單調(diào)遞增,因為,所以到對稱軸的距離小于到對稱軸的距離,即,,化簡可得,,解得,故選D【點睛】本題考查了函數(shù)的單調(diào)性和奇偶性的相關(guān)性質(zhì),若函數(shù)是偶函數(shù),則函數(shù)關(guān)于軸對稱且軸左右兩側(cè)單調(diào)性相反,考查推理能力與計算能力,考查函數(shù)方程思想與化歸思想,是中檔題10、A【解析】化為點斜式:,顯然直線過定點,且定點在圓內(nèi)∴直線與圓相交,故選A11、D【解析】根據(jù)圖象求得正確答案.【詳解】由圖象可知.故選:D12、D【解析】要保證函數(shù)在R上單調(diào)遞減,需使得和都為減函數(shù),且x=1處函數(shù)值滿足,由此解得答案.【詳解】由函數(shù)在R上單調(diào)遞減,可得,解得,故選:D.二、填空題(本大題共4小題,共20分)13、【解析】由弧長公式變形可得:,代入計算即可.【詳解】解:由題意可知:(弧度).故答案為:.14、##【解析】由余弦函數(shù)的有界性求解即可【詳解】因為,所以,所以,故函數(shù)的值域為,故答案為:15、2【解析】設(shè)扇形的半徑為r,圓心角的弧度數(shù)為,由弧度制下扇形的弧長與面積計算公式可得,,解得半徑r=2,圓心角的弧度數(shù),所以答案為2考點:弧度制下扇形的弧長與面積計算公式16、【解析】設(shè)扇形的半徑和弧長分別為,由題設(shè)可得,則扇形圓心角所對的弧度數(shù)是,應(yīng)填答案三、解答題(本大題共6小題,共70分)17、(1);(2).【解析】(1)由函數(shù)的定義域為,得到恒成立,即恒成立,分類討論,即可求解.(2)根據(jù)題意,轉(zhuǎn)化為,利用單調(diào)性的定義,得到在R上單調(diào)遞增,求得,得出恒成立,得出恒成立,分類討論,即可求解.【詳解】(1)由函數(shù)定義域為,即恒成立,即恒成立,當(dāng)時,恒成立,因為,所以,即;當(dāng)時,顯然成立;當(dāng)時,恒成立,因為,所以,綜上可得,實數(shù)的取值范圍.(2)由對任意,存在,使得,可得,設(shè),因為,所以,同理可得,所以,所以,可得,即,所以在R上單調(diào)遞增,所以,則,即恒成立,因為,所以恒成立,當(dāng)時,恒成立,因為,當(dāng)且僅當(dāng)時等號成立,所以,所以,解得,所以;當(dāng)時,顯然成立;當(dāng)時,恒成立,沒有最大值,不合題意,綜上,實數(shù)的取值范圍.【點睛】利用函數(shù)求解方程的根的個數(shù)或研究不等式問題的策略:1、利用函數(shù)的圖象研究方程的根的個數(shù):當(dāng)方程與基本性質(zhì)有關(guān)時,可以通過函數(shù)圖象來研究方程的根,方程的根就是函數(shù)與軸的交點的橫坐標(biāo),方程的根據(jù)就是函數(shù)和圖象的交點的橫坐標(biāo);2、利用函數(shù)研究不等式:當(dāng)不等式問題不能用代數(shù)法求解但其與函數(shù)有關(guān)時,常將不等式問題轉(zhuǎn)化為兩函數(shù)圖象的上、下關(guān)系問題,從而利用數(shù)形結(jié)合求解.18、(1)(2)為奇函數(shù)(3)【解析】(1)要使函數(shù)有意義,必須滿足,從而得到定義域;(2)利用奇偶性定義判斷奇偶性;(3)函數(shù)的零點即方程的根.即的根,又為奇函數(shù),所以.易證:在定義域上為增函數(shù),∴由得,從而解得函數(shù)的零點.試題解析:(1)要使函數(shù)有意義,必須滿足,∴,因此,的定義域為.(2)函數(shù)為奇函數(shù).∵的定義域為,對內(nèi)的任意有:,所以,為奇函數(shù).(3)函數(shù)的零點即方程的根.即的根,又為奇函數(shù),所以.任取,且,∵,∴,∴∵且,∴,∴,∴,∴,即,∴在定義域上為增函數(shù),∴由得解得或,驗證當(dāng)時,不符合題意,當(dāng)時,符合題意,所以函數(shù)的零點為.點睛:證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差:,并將此式變形(要注意變形到能判斷整個式子符號為止);(3)定號:判斷的正負(要注意說理的充分性),必要時要討論;(4)下結(jié)論:根據(jù)定義得出其單調(diào)性.19、(1)見解析;(2)見解析【解析】分析:(1)可根據(jù)為等腰三角形得到,再根據(jù)平面平面可以得到平面,故.(2)因及是中點,從而有,再根據(jù)平面得到,從而平面,故平面平面.詳解:(1)證明:因為,點是棱的中點,所以,平面.因為平面平面,平面平面,平面,所以平面,又因為平面,所以.(2)證明:因為,點是的中點,所以.由(1)可得,又因為,所以平面,又因為平面,所以平面平面點睛:線線垂直的證明,可歸結(jié)為線面垂直,也可以轉(zhuǎn)化到平面中的某兩條直線的垂直問題,而面面垂直的證明,可轉(zhuǎn)化為線面垂直問題,也轉(zhuǎn)化為證明二面角為直二面角.20、(1)證明見解析;(2)證明見解析;(3).【解析】(1)先求出函數(shù)定義域,證明即可;(2)根據(jù)函數(shù)單調(diào)性的定義域,作差、定號即可證明函數(shù)單調(diào)性;(3)將原不等式轉(zhuǎn)化為二次不等式求解即可.【小問1詳解】證明:由函數(shù)的解析式,得其定義域為,又因為故是奇函數(shù).【小問2詳解】證明:任取,,則==,因為,,所以,,所以,綜上所述,對任意都有,所以,在區(qū)間上是增函數(shù).【小問3詳解】因為,所以等價于,當(dāng)時,,解得;當(dāng)時,,解得;所以,不等式的解集為.21、(1);(2),;(3)【解析】(1)利用三角函數(shù)的恒等變換,對函數(shù)的表達式進行化簡,進而可以求出周期;(2)利用正弦函數(shù)對稱軸與對稱中心的性質(zhì),可以求出函數(shù)的對稱軸和對稱中心;(3)利用題中給的關(guān)系式可以求出和,然后將展開求值即可【詳解】(1).所以函數(shù)的最小正周期.(2)由于,令,,得,故函數(shù)的對稱軸為.令,,得,故函數(shù)的對稱中心為.(3)因為,所以,即,因為,所以,則,,所以.【點睛】本題考查了三角函數(shù)的恒等變換,三角函數(shù)的周期、對稱軸、對稱中心,及利用函數(shù)的關(guān)系式求值,屬于中檔題22、(Ⅰ)最小正周期是,增區(qū)間為,;(Ⅱ)最大值為5,最小值為4【解析】Ⅰ根據(jù)向量數(shù)量積,利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用正弦函數(shù)的周期公式可得函數(shù)的周期,利用正弦函數(shù)的單調(diào)性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國起重機械配件部裝件總成行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國藤編花盆行業(yè)投資前景及策略咨詢研究報告
- 2024年度墻體廣告新材料技術(shù)研發(fā)與轉(zhuǎn)化合同3篇
- 2024年度特種圓鋼進口貿(mào)易代理合同3篇
- 合同翻譯樣本PurchaseContract2025年
- 2024年版的生物制藥研發(fā)合作合同
- 2024年汽車內(nèi)飾香氛系統(tǒng)銷售與安裝合同范本3篇
- 2024年中草藥原料采購與品牌戰(zhàn)略推廣合同3篇
- 2024至2030年中國彈性橡膠地墊行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年高溫蒸煮真空袋項目投資價值分析報告
- 低空經(jīng)濟研究報告-中國低空經(jīng)濟行業(yè)市場現(xiàn)狀調(diào)查及未來發(fā)展趨勢報告(2020-2023年)
- 酒水服務(wù)與品鑒智慧樹知到期末考試答案2024年
- 2024法務(wù)部門合規(guī)風(fēng)險管理實踐模板
- 商場保潔服務(wù)日常巡檢方案
- 中醫(yī)培訓(xùn)課件:《艾灸技術(shù)》
- 國家開放大學(xué)《理工英語4》綜合練習(xí)參考答案
- 河北省保定市2023-2024學(xué)年高二上學(xué)期期末調(diào)研數(shù)學(xué)試題(含答案解析)
- LS/T 1234-2023植物油儲存品質(zhì)判定規(guī)則
- 2016-2023年江蘇醫(yī)藥職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 提醒關(guān)電關(guān)水關(guān)門注意安全的公告
- 箱變檢測報告
評論
0/150
提交評論