內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2022年高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2022年高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2022年高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2022年高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
內(nèi)蒙古通遼市科左后旗甘旗卡第二中學(xué)2022年高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.32.已知實(shí)數(shù)集,集合,集合,則()A. B. C. D.3.設(shè)集合,,若,則()A. B. C. D.4.已知是邊長為的正三角形,若,則A. B.C. D.5.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個(gè)單位 B.向左平移個(gè)單位C.向右平移個(gè)單位 D.向右平移個(gè)單位6.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長度,若,,則()A. B.C.6 D.7.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.8.已知過點(diǎn)且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.39.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.6124210.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.11.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.12.已知向量,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域?yàn)開____________.14.已知單位向量的夾角為,則=_________.15.如圖是一個(gè)算法的偽代碼,運(yùn)行后輸出的值為___________.16.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),己知A(3,1),B(-1,3),若點(diǎn)C滿足,其中α,β∈R,且α+β=1,則點(diǎn)C的軌跡方程為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知與有兩個(gè)不同的交點(diǎn),其橫坐標(biāo)分別為().(1)求實(shí)數(shù)的取值范圍;(2)求證:.18.(12分)已知?jiǎng)訄AQ經(jīng)過定點(diǎn),且與定直線相切(其中a為常數(shù),且).記動(dòng)圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設(shè)點(diǎn)P的坐標(biāo)為,過點(diǎn)P作曲線C的切線,切點(diǎn)為A,若過點(diǎn)P的直線m與曲線C交于M,N兩點(diǎn),則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.19.(12分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值20.(12分)若不等式在時(shí)恒成立,則的取值范圍是__________.21.(12分)橢圓:的左、右焦點(diǎn)分別是,,離心率為,左、右頂點(diǎn)分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、(不與點(diǎn)、重合),直線與直線相交于點(diǎn),求證:、、三點(diǎn)共線.22.(10分)的內(nèi)角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點(diǎn)是線段的中點(diǎn),,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因?yàn)橹本€與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點(diǎn)睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.2.A【解析】

可得集合,求出補(bǔ)集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點(diǎn)睛】本題考查了集合的補(bǔ)集和交集的混合運(yùn)算,屬于基礎(chǔ)題.3.A【解析】

根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點(diǎn)睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.4.A【解析】

由可得,因?yàn)槭沁呴L為的正三角形,所以,故選A.5.A【解析】

運(yùn)用輔助角公式將兩個(gè)函數(shù)公式進(jìn)行變形得以及,按四個(gè)選項(xiàng)分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點(diǎn)睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯(cuò)點(diǎn)有兩個(gè),一個(gè)是混淆了已知函數(shù)和目標(biāo)函數(shù);二是在平移時(shí),忘記乘了自變量前的系數(shù).6.D【解析】

先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點(diǎn)睛】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡單題目.7.D【解析】

根據(jù)底面為等邊三角形,取中點(diǎn),可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【詳解】設(shè)為中點(diǎn),是等邊三角形,所以,又因?yàn)?,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點(diǎn)睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計(jì)算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.8.C【解析】

設(shè)切點(diǎn)為,則,由于直線經(jīng)過點(diǎn),可得切線的斜率,再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線在點(diǎn)處的切線斜率,建立關(guān)于的方程,從而可求方程.【詳解】若直線與曲線切于點(diǎn),則,又∵,∴,∴,解得,,∴過點(diǎn)與曲線相切的直線方程為或,故選C.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導(dǎo)數(shù)的幾何意義求解切線的方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.9.C【解析】

根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。10.C【解析】

設(shè)M,N,P分別為和的中點(diǎn),得出的夾角為MN和NP夾角或其補(bǔ)角,根據(jù)中位線定理,結(jié)合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據(jù)題意畫出圖形:設(shè)M,N,P分別為和的中點(diǎn),則的夾角為MN和NP夾角或其補(bǔ)角可知,.作BC中點(diǎn)Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點(diǎn)睛】此題考查異面直線夾角,關(guān)鍵點(diǎn)通過平移將異面直線夾角轉(zhuǎn)化為同一平面內(nèi)的夾角,屬于較易題目.11.A【解析】

模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題考查的是有關(guān)程序框圖的問題,涉及到的知識(shí)點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.12.A【解析】

利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點(diǎn)睛】本題考查向量平行定理,考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意可得,,解不等式可求.【詳解】解:由題意可得,,解可得,,故答案為.【點(diǎn)睛】本題主要考查了函數(shù)的定義域的求解,屬于基礎(chǔ)題.14.【解析】

因?yàn)閱挝幌蛄康膴A角為,所以,所以==.15.13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時(shí)輸出的b值為13.故答案為13.16.【解析】

根據(jù)向量共線定理得A,B,C三點(diǎn)共線,再根據(jù)點(diǎn)斜式得結(jié)果【詳解】因?yàn)?且α+β=1,所以A,B,C三點(diǎn)共線,因此點(diǎn)C的軌跡為直線AB:【點(diǎn)睛】本題考查向量共線定理以及直線點(diǎn)斜式方程,考查基本分析求解能力,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】

(1)利用導(dǎo)數(shù)研究的單調(diào)性,分析函數(shù)性質(zhì),數(shù)形結(jié)合,即得解;(2)構(gòu)造函數(shù),可證得:,,分析直線,與從左到右交點(diǎn)的橫坐標(biāo),在,處的切線即得解.【詳解】(1)設(shè)函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時(shí);;時(shí).(2)①過點(diǎn),的直線為,則令,,,.②過點(diǎn),的直線為,則,在上單調(diào)遞增.③設(shè)直線,與從左到右交點(diǎn)的橫坐標(biāo)依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點(diǎn)的橫坐標(biāo)依次為,.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了學(xué)生數(shù)形結(jié)合,綜合分析,轉(zhuǎn)化劃歸,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于較難題.18.(1),拋物線;(2)存在,.【解析】

(1)設(shè),易得,化簡即得;(2)利用導(dǎo)數(shù)幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數(shù)的關(guān)系即可解決.【詳解】(1)設(shè),由題意,得,化簡得,所以動(dòng)圓圓心Q的軌跡方程為,它是以F為焦點(diǎn),以直線l為準(zhǔn)線的拋物線.(2)不妨設(shè).因?yàn)椋?,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設(shè)直線m的方程為,代入并整理,得.首先,,解得或.其次,設(shè),,則,..故存在直線m,使得,此時(shí)直線m的斜率的取值范圍為.【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,涉及拋物線中的存在性問題,考查學(xué)生的計(jì)算能力,是一道中檔題.19.(1)的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為.(2)【解析】

(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,,之后進(jìn)行化一,可得到最值,此時(shí),可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標(biāo)方程為.由得,將代入得,故曲線的直角坐標(biāo)方程為.(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,則,其中為銳角,且滿足,,當(dāng)時(shí),取最大值,此時(shí),【點(diǎn)睛】這個(gè)題目考查了參數(shù)方程化為普通方程的方法,極坐標(biāo)化為直角坐標(biāo)的方法,以及極坐標(biāo)中極徑的幾何意義,極徑代表的是曲線上的點(diǎn)到極點(diǎn)的距離,在參數(shù)方程和極坐標(biāo)方程中,能表示距離的量一個(gè)是極徑,一個(gè)是t的幾何意義,其中極徑多數(shù)用于過極點(diǎn)的曲線,而t的應(yīng)用更廣泛一些.20.【解析】

原不等式等價(jià)于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因?yàn)樵跁r(shí)恒成立,故在恒成立.令,由可得.令,,則為上的增函數(shù),故.故.故答案為:.【點(diǎn)睛】本題考查含參數(shù)的不等式的恒成立,對于此類問題,優(yōu)先考慮參變分離,把恒成立問題轉(zhuǎn)化為不含參數(shù)的新函數(shù)的最值問題,本題屬于基礎(chǔ)題.21.(1);(2)見解析【解析】

(1)根據(jù)已知可得,結(jié)合離心率和關(guān)系,即可求出橢圓的標(biāo)準(zhǔn)方程;(2)斜率不為零,設(shè)的方程為,與橢圓方程聯(lián)立,消去,得到縱坐標(biāo)關(guān)系,求出方程,令求出坐標(biāo),要證、、三點(diǎn)共線,只需證,將分子用縱坐標(biāo)表示,即可證明結(jié)論.【詳解】(1)由于,將代入橢圓方程,得,由題意知,即.又,所以,.所以橢圓的方程為.(2)解法一:依題意直線斜率不為0,設(shè)的方程為,聯(lián)立方程,消去得,由題意,得恒成立,設(shè),,所以,直線的方程為.令,得.又因?yàn)?,,則直線,的斜率分別為,,所以.上式中的分子,.所以,,三點(diǎn)共線.解法二:當(dāng)直線的斜率不存在時(shí),由題意,得的方程為,代入橢圓的方程,得,,直線的方程為.則,,,所以,即,,三點(diǎn)共線.當(dāng)直線的斜率存在時(shí),設(shè)的方程為,,,聯(lián)立方程消去,得.由題意,得恒成立,故,.直線的方程為.令,得.又因?yàn)?,,則直線,的斜率分別為,,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論