2022-2023學年山東省濟寧市馬營鎮(zhèn)初級中學數(shù)學九年級第一學期期末聯(lián)考試題含解析_第1頁
2022-2023學年山東省濟寧市馬營鎮(zhèn)初級中學數(shù)學九年級第一學期期末聯(lián)考試題含解析_第2頁
2022-2023學年山東省濟寧市馬營鎮(zhèn)初級中學數(shù)學九年級第一學期期末聯(lián)考試題含解析_第3頁
2022-2023學年山東省濟寧市馬營鎮(zhèn)初級中學數(shù)學九年級第一學期期末聯(lián)考試題含解析_第4頁
2022-2023學年山東省濟寧市馬營鎮(zhèn)初級中學數(shù)學九年級第一學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.若,則函數(shù)與在同一平面直角坐標系中的圖象大致是()A. B. C. D.2.如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是A.55° B.60° C.65° D.70°3.如圖,AD是的一條角平分線,點E在AD上.若,,則與的面積比為()A.1:5 B.5:1 C.3:20 D.20:34.在函數(shù)中,自變量x的取值范圍是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣15.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中線,以C為圓心,5cm為半徑作⊙C,則點M與⊙C的位置關(guān)系為()A.點M在⊙C上 B.點M在⊙C內(nèi) C.點M在⊙C外 D.點M不在⊙C內(nèi)6.在一塊半徑為的圓形鋼板中裁出一個最大的等邊三角形,此等邊三角形的邊長()A. B. C. D.7.已知Rt△ABC中,∠C=90o,AC=4,BC=6,那么下列各式中,正確的是()A.sinA= B.cosA= C.tanA= D.tanB=8.如圖,四邊形ABCD和四邊形A′B′C′D′是以點O為位似中心的位似圖形,若OA:OA′=2:3,四邊形ABCD的面積等于4,則四邊形A′B′C′D′的面積為()A.3 B.4 C.6 D.99.把拋物線y=(x﹣1)2+2沿x軸向右平移2個單位后,再沿y軸向下平移3個單位,得到的拋物線解析式為()A.y=(x﹣3)2+1 B.y=(x+1)2﹣1 C.y=(x﹣3)2﹣1 D.y=(x+1)2﹣210.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<y2A.①② B.②③ C.②④ D.①③④11.如圖,⊙C過原點,與x軸、y軸分別交于A、D兩點.已知∠OBA=30°,點D的坐標為(0,2),則⊙C半徑是()A. B. C. D.212.如圖,已知和是以點為位似中心的位似圖形,且和的周長之比為,點的坐標為,則點的坐標為().A. B. C. D.二、填空題(每題4分,共24分)13.如圖,OA、OB是⊙O的半徑,CA、CB是⊙O的弦,∠ACB=35°,OA=2,則圖中陰影部分的面積為_____.(結(jié)果保留π)14.已知關(guān)于的方程的一個根為6,則實數(shù)的值為__________.15.關(guān)于x的分式方程有增根,則m的值為__________.16.在一個不透明的布袋中裝有紅色和白色兩種顏色的小球(除顏色以外沒有任何區(qū)別),隨機摸出一球,摸到紅球的概率是,其中白球6個,則紅球有________個.17.在平面直角坐標系中,點(﹣3,2)關(guān)于原點對稱的點的坐標是_____.18.點(5,﹣)關(guān)于原點對稱的點的坐標為__________.三、解答題(共78分)19.(8分)小李在學習了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:(1)他認為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應(yīng)該成立.即如圖①,在中,是邊上的中線,若,求證:.(2)如圖②,已知矩形,如果在矩形外存在一點,使得,求證:.(可以直接用第(1)問的結(jié)論)(3)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊與的數(shù)量關(guān)系.20.(8分)解方程:3(x﹣4)2=﹣2(x﹣4)21.(8分)如圖,在中,,點為邊的中點,請按下列要求作圖,并解決問題:(1)作點關(guān)于的對稱點;(2)在(1)的條件下,將繞點順時針旋轉(zhuǎn),①面出旋轉(zhuǎn)后的(其中、、三點旋轉(zhuǎn)后的對應(yīng)點分別是點、、);②若,則________.(用含的式子表示)22.(10分)如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于、兩點,其中點的坐標為,點的坐標為.(1)根據(jù)圖象,直接寫出滿足的的取值范圍;(2)求這兩個函數(shù)的表達式;(3)點在線段上,且,求點的坐標.23.(10分)為加快城鄉(xiāng)對接,建設(shè)美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經(jīng)C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.(1)開通隧道前,汽車從A地到B地要走多少千米?(2)開通隧道后,汽車從A地到B地可以少走多少千米?(結(jié)果保留根號)24.(10分)2019年全國青少年禁毒知識競賽開始以來,某市青少年學生踴躍參加,掀起了學習禁毒知識的熱潮,禁毒知識競賽的成績分為四個等級:優(yōu)秀,良好,及格,不及格.為了了解該市廣大學生參加禁毒知識競賽的成績,抽取了部分學生的成績,根據(jù)抽查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖:(1)本次抽查的人數(shù)是;扇形統(tǒng)計圖中不及格學生所占的圓心角的度數(shù)為;(2)補全條形統(tǒng)計圖;(3)若某校有2000名學生,請你根據(jù)調(diào)查結(jié)果估計該校學生知識競賽成績?yōu)椤皟?yōu)秀”和“良好”兩個等級共有多少人?25.(12分)中國古賢常說萬物皆自然,而古希臘學者說萬物皆數(shù).同學們還記得我們最初接觸的數(shù)就是“自然數(shù)”吧!在數(shù)的學習過程中,我們會對其中一些具有某種特性的自然數(shù)進行研究,我們研究了奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等.現(xiàn)在我們來研究另一種特珠的自然數(shù)—“喜數(shù)”.定義:對于一個兩位自然數(shù),如果它的個位和十位上的數(shù)字均不為零,且它正好等于其個位和十位上的數(shù)字的和的倍(為正整數(shù)),我們就說這個自然數(shù)是一個“喜數(shù)”.例如:24就是一個“4喜數(shù)”,因為25就不是一個“喜數(shù)”因為(1)判斷44和72是否是“喜數(shù)”?請說明理由;(2)試討論是否存在“7喜數(shù)”若存在請寫出來,若不存在請說明理由.26.春節(jié)期間,支付寶“集五?!被顒又械摹凹甯!备?ü卜譃?種,分別為富強福、和諧福、友善福、愛國福、敬業(yè)福,從國家、社會和個人三個層面體現(xiàn)了社會主義核心價值觀的價值目標.(1)小明一家人春節(jié)期間參與了支付寶“集五?!被顒?,小明和姐姐都缺一個“敬業(yè)福”,恰巧爸爸有一個可以送給他們其中一個人,兩個人各設(shè)計了一個游戲,獲勝者得到“敬業(yè)福”.在一個不透明盒子里放入標號分別為1,2,3,4的四個小球,這些小球除了標號數(shù)字外都相同,將小球搖勻.小明的游戲規(guī)則是:從盒子中隨機摸出一個小球,摸到標號數(shù)字為奇數(shù)小球,則判小明獲勝,否則,判姐姐獲勝.請判斷,此游戲規(guī)則對小明和姐姐公平嗎?說明理由.姐姐的游戲規(guī)則是:小明從盒子中隨機摸出一個小球,記下標號數(shù)字后放回盒里,充分搖勻后,姐姐再從盒中隨機摸出一個小球,并記下標號數(shù)字.若兩次摸到小球的標號數(shù)字同為奇數(shù)或同為偶數(shù),則判小明獲勝,若兩次摸到小球的標號數(shù)字為一奇一偶,則判姐姐獲勝.請用列表法或畫樹狀圖的方法進行判斷此游戲規(guī)則對小明和姐姐是否公平.(2)“五?!敝畜w現(xiàn)了社會主義核心價值觀的價值目標的個人層面有哪些?

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)及正比例函數(shù)與反比例函數(shù)圖象的特點,可以從和兩方面分類討論得出答案.【詳解】∵,∴分兩種情況:

(1)當時,正比例函數(shù)數(shù)的圖象過原點、第一、三象限,反比例函數(shù)圖象在第二、四象限,無此選項;

(2)當時,正比例函數(shù)的圖象過原點、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項B符合.

故選:B.【點睛】本題主要考查了反比例函數(shù)的圖象性質(zhì)和正比例函數(shù)的圖象性質(zhì),解題的關(guān)鍵是掌握它們的性質(zhì).2、C【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答即可.【詳解】∵將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【點睛】此題考查旋轉(zhuǎn)的性質(zhì),關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答.3、C【分析】根據(jù)已知條件先求得S△ABE:S△BED=3:2,再根據(jù)三角形相似求得S△ACD=S△ABE=S△BED,根據(jù)S△ABC=S△ABE+S△ACD+S△BED即可求得.【詳解】解:∵AE:ED=3:2,

∴AE:AD=3:5,

∵∠ABE=∠C,∠BAE=∠CAD,

∴△ABE∽△ACD,

∴S△ABE:S△ACD=9:25,

∴S△ACD=S△ABE,

∵AE:ED=3:2,

∴S△ABE:S△BED=3:2,

∴S△ABE=S△BED,

∴S△ACD=S△ABE=S△BED,

∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,

∴S△BDE:S△ABC=3:20,

故選:C.【點睛】本題考查了相似三角形的判定和性質(zhì),不同底等高的三角形面積的求法等,等量代換是本題的關(guān)鍵.4、C【解析】試題分析:由題意,得x+4≥0且x≠0,解得x≥﹣4且x≠0,故選C.考點:函數(shù)自變量的取值范圍.5、A【解析】根據(jù)題意可求得CM的長,再根據(jù)點和圓的位置關(guān)系判斷即可.【詳解】如圖,∵由勾股定理得AB==10cm,∵CM是AB的中線,∴CM=5cm,∴d=r,所以點M在⊙C上,故選A.【點睛】本題考查了點和圓的位置關(guān)系,解決的根據(jù)是點在圓上?圓心到點的距離=圓的半徑.6、D【分析】畫出圖形,作于點,利用垂徑定理和等邊三角形的性質(zhì)求出AC的長即可得出AB的長.【詳解】解:依題意得,連接,,作于點,∵,∴,,∴,∴.故選:D.【點睛】本題考查了圓的內(nèi)接多邊形,和垂徑定理的使用,弄清題意準確計算是關(guān)鍵.7、D【分析】本題可以利用銳角三角函數(shù)的定義以及勾股定理分別求解,再進行判斷即可.【詳解】∵∠C=90°,BC=6,AC=4,∴AB=,A、sinA=,故此選項錯誤;B、cosA=,故此選項錯誤;C、tanA=,故此選項錯誤;D、tanB=,故此選項正確.故選:D.

【點睛】此題主要考查了銳角三角函數(shù)的定義以及勾股定理,熟練應(yīng)用銳角三角函數(shù)的定義是解決問題的關(guān)鍵.8、D【分析】利用位似的性質(zhì)得到AD:A′D′=OA:OA′=2:3,再利用相似多邊形的性質(zhì)得到得到四邊形A′B′C′D′的面積.【詳解】解:∵四邊形ABCD和四邊形A′B′C′D′是以點O為位似中心的位似圖形,∴AD:A′D′=OA:OA′=2:3,∴四邊形ABCD的面積:四邊形A′B′C′D′的面積=4:1,而四邊形ABCD的面積等于4,∴四邊形A′B′C′D′的面積為1.故選:D.【點睛】本題考查的是位似變換的性質(zhì),掌握位似圖形與相似圖形的關(guān)系、相似多邊形的性質(zhì)是解題的關(guān)鍵.9、C【分析】直接根據(jù)“上加下減,左加右減”的原則進行解答.【詳解】把拋物線y=(x﹣1)2+2沿x軸向右平移2個單位后,再沿y軸向下平移3個單位,得到的拋物線解析式為y=(x﹣1﹣2)2+2﹣3,即y=(x﹣3)2﹣1.故選:C.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.10、C【解析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據(jù)對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質(zhì),屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關(guān)系再進行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.11、B【解析】連接AD∵∠AOD=90°,∴AD是圓的直徑.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD=,則圓的半徑是.故選B.點睛:連接AD.根據(jù)90°的圓周角所對的弦是直徑,得AD是直徑,根據(jù)等弧所對的圓周角相等,得∠D=∠B=30°,運用解直角三角形的知識即可求解.12、A【分析】設(shè)位似比例為k,先根據(jù)周長之比求出k的值,再根據(jù)點B的坐標即可得出答案.【詳解】設(shè)位似圖形的位似比例為k則和的周長之比為,即解得又點B的坐標為點的橫坐標的絕對值為,縱坐標的絕對值為點位于第四象限點的坐標為故選:A.【點睛】本題考查了位似圖形的坐標變換,依據(jù)題意,求出位似比例式解題關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】利用扇形的面積公式計算即可.【詳解】∵∠AOB=2∠ACB=70°,∴S扇形OAB==,故答案為.【點睛】本題主要考查扇形的面積公式,求出扇形的圓心角是解題的關(guān)鍵.14、1【分析】將一元二次方程的根代入即可求出k的值.【詳解】解:∵關(guān)于的方程的一個根為6∴解得:k=1故答案為:1.【點睛】此題考查的是已知一元二次方程的根,求方程中的參數(shù),掌握方程的解的定義是解決此題的關(guān)鍵.15、1.【解析】去分母得:7x+5(x-1)=2m-1,因為分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案為1.16、1【分析】設(shè)紅球有x個,根據(jù)題意列出方程,解方程并檢驗即可.【詳解】解:設(shè)紅球有x個,由題意得:,解得,經(jīng)檢驗,是原分式方程的解,所以,紅球有1個,故答案為:1.【點睛】本題主要考查根據(jù)概率求數(shù)量,掌握概率的求法是解題的關(guān)鍵.17、(3,﹣2)【解析】根據(jù)平面直角坐標系內(nèi)兩點關(guān)于原點對稱橫縱坐標互為相反數(shù),即可得出答案.【詳解】解:平面直角坐標系內(nèi)兩點關(guān)于原點對稱橫縱坐標互為相反數(shù),∴點(﹣3,2)關(guān)于原點對稱的點的坐標是(3,﹣2),故答案為(3,﹣2).【點睛】本題主要考查了平面直角坐標系內(nèi)點的坐標位置關(guān)系,難度較?。?8、(-5,)【分析】讓兩點的橫縱坐標均互為相反數(shù)可得所求的坐標.【詳解】∵兩點關(guān)于原點對稱,∴橫坐標為-5,縱坐標為,故點P(5,?)關(guān)于原點對稱的點的坐標是:(-5,).故答案為:(-5,).【點睛】此題主要考查了關(guān)于原點對稱的坐標的特點:兩點的橫坐標互為相反數(shù);縱坐標互為相反數(shù).三、解答題(共78分)19、(1)詳見解析;(2)詳見解析;(3)【分析】(1)利用等腰三角形的性質(zhì)和三角形內(nèi)角和即可得出結(jié)論;

(2)先判斷出OE=AC,即可得出OE=BD,即可得出結(jié)論;

(3)先判斷出△ABE是底角是30°的等腰三角形,即可構(gòu)造直角三角形即可得出結(jié)論.【詳解】(1)∵AD=BD,

∴∠B=∠BAD,

∵AD=CD,

∴∠C=∠CAD,

在△ABC中,∠B+∠C+∠BAC=180°,

∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°

∴∠B+∠C=90°,

∴∠BAC=90°,(2)如圖②,連接與,交點為,連接四邊形是矩形(3)如圖3,過點做于點四邊形是矩形,是等邊三角形,由(2)知,在中,,【點睛】此題是四邊形綜合題,主要考查了矩形是性質(zhì),直角三角形的性質(zhì)和判定,含30°角的直角三角形的性質(zhì),三角形的內(nèi)角和公式,解(1)的關(guān)鍵是判斷出∠B=∠BAD,解(2)的關(guān)鍵是判斷出OE=AC,解(3)的關(guān)鍵是判斷出△ABE是底角為30°的等腰三角形,進而構(gòu)造直角三角形.20、x1=4,x2=.【解析】移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.【詳解】3(x﹣4)2=﹣2(x﹣4),3(x﹣4)2+2(x﹣4)=0,(x﹣4)[3(x﹣4)+2]=0,x﹣4=0,3(x﹣4)+2=0,x1=4,x2=.【點睛】本題考查了解一元二次方程,能選擇適當?shù)姆椒ń庖辉畏匠淌墙獯祟}的關(guān)鍵,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接開平方法.21、(1)見解析;(2)①見解析,②90°?α【分析】(1)利用網(wǎng)格特點和軸對稱的性質(zhì)畫出O點;(2)①利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)分別畫出A、B、C三點對應(yīng)點點E、F、G即可;②先確定∠OCB=∠DCB=α,再利用OB=OC和三角形內(nèi)角和得到∠BOC=180°?2α,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠COG=90°,則∠BOG=270°?2α,于是可計算出∠OGB=α?45°,然后計算∠OGC?∠OGB即可.【詳解】(1)如圖,點O為所作;(2)①如圖,△EFG為所作;②∵點O與點D關(guān)于BC對稱,∴∠OCB=∠DCB=α,∵OB=OC,∴∠OBC=∠OCB=α,∴∠BOC=180°?2α,∵∠COG=90°,∴∠BOG=180°?2α+90°=270°?2α,∵OB=OG,∴∠OGB=[180°?(270°?2α)]=α?45°,∴∠BGC=∠OGC?∠OGB=45°?(α?45°)=90°?α.故答案為90°?α.【點睛】本題考查了作圖?旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應(yīng)角都相等都等于旋轉(zhuǎn)角,對應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應(yīng)點,順次連接得出旋轉(zhuǎn)后的圖形.22、(1)或;(2),;(3)【分析】(1)觀察圖象得到當或時,直線y=k1x+b都在反比例函數(shù)的圖象上方,由此即可得;(2)先把A(-1,4)代入y=可求得k2,再把B(4,n)代入y=可得n=-1,即B點坐標為(4,-1),然后把點A、B的坐標分別代入y=k1x+b得到關(guān)于k1、b的方程組,解方程組即可求得答案;(3)設(shè)與軸交于點,先求出點C坐標,繼而求出,根據(jù)分別求出,,再根據(jù)確定出點在第一象限,求出,繼而求出P點的橫坐標,由點P在直線上繼而可求出點P的縱坐標,即可求得答案.【詳解】(1)觀察圖象可知當或,k1x+b>;(2)把代入,得,∴,∵點在上,∴,∴,把,代入得,解得,∴;(3)設(shè)與軸交于點,∵點在直線上,∴,,又,∴,,又,∴點在第一象限,∴,又,∴,解得,把代入,得,∴.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合題,涉及了待定系數(shù)法,函數(shù)與不等式,三角形的面積等,熟練掌握相關(guān)知識是解題的關(guān)鍵.注意數(shù)形結(jié)合思想的應(yīng)用.23、(1)開通隧道前,汽車從A地到B地要走(80+40)千米;(2)汽車從A地到B地比原來少走的路程為[40+40(﹣)]千米.【分析】(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進而求出汽車從A地到B地比原來少走多少路程.【詳解】(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:開通隧道前,汽車從A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽車從A地到B地比原來少走的路程為[40+40]千米.【點睛】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.24、(1)120,18°;(2)詳見解析;(3)1000【分析】(1)由優(yōu)秀的人數(shù)及其所占百分比可得總?cè)藬?shù);用360°乘以不及格人數(shù)所占比例即可得出不及格學生所占的圓心角的度數(shù);(2)用總?cè)藬?shù)減去各等級人數(shù)之和求出良好的人數(shù),據(jù)此可補全條形圖;(3)用總?cè)藬?shù)乘以樣本中“優(yōu)秀”和“良好”人數(shù)和占被調(diào)查人數(shù)的比例即可得出答案.【詳解】解:(1)本次抽查的人數(shù)為:24÷20%=120(人),扇形統(tǒng)計圖中不及格學生所占的圓心角的度數(shù)為360°×=18°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論