版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第十五章 股指、外匯、期貨與利率為標(biāo)的的期權(quán)鄭振龍 陳蓉廈門大學(xué)金融系課程網(wǎng)站: Email: 引言股價(jià)指數(shù)期權(quán)、外匯期權(quán)和期貨期權(quán)定價(jià)原理相同,都可以看成是支付連續(xù)紅利資產(chǎn)的期權(quán)。利率期權(quán)則具有高度的復(fù)雜性。本章將分析股價(jià)指數(shù)期權(quán)、外匯期權(quán)和期貨期權(quán)的定價(jià)原理,并對利率期權(quán)進(jìn)行初步的介紹。 14:02Copyright 2012 Zheng, Zhenlong & Chen, Rong, XMU2歐式股價(jià)指數(shù)期權(quán)、外匯期權(quán)和期貨期權(quán)的定價(jià)股價(jià)指數(shù)期權(quán)、外匯期權(quán)和期貨期權(quán)都可以被視為支付連續(xù)紅利的資產(chǎn),因而歐式的股價(jià)指數(shù)期權(quán)、外匯期權(quán)和期貨期權(quán)都可以在支付連續(xù)收益的歐式期權(quán)定價(jià)模型中得到應(yīng)用。
2、14:02Copyright 2012 Zheng, Zhenlong & Chen, Rong, XMU3默頓模型根據(jù)默頓模型,標(biāo)的股票支付連續(xù)紅利的歐式看漲期權(quán)和看跌期權(quán)的價(jià)值分別為當(dāng)q0時(shí),默頓模型就轉(zhuǎn)化為基本的B-S-M模型。 14:02Copyright 2012 Zheng, Zhenlong & Chen, Rong, XMU4外匯期權(quán)默頓模型中的S是外匯匯率,q是外匯的連續(xù)復(fù)利,則是外匯匯率的波動(dòng)率。因此外匯的歐式看漲期權(quán)的價(jià)值為 外匯的歐式看跌期權(quán)的價(jià)值為14:02Copyright 2012 Zheng, Zhenlong & Chen, Rong, XMU5期貨期權(quán)當(dāng)無收
3、益標(biāo)的資產(chǎn)服從幾何布朗運(yùn)動(dòng)時(shí),其期貨價(jià)格F同樣服從幾何布朗運(yùn)動(dòng)歐式期貨看漲期權(quán)和歐式期貨看跌期權(quán)的價(jià)值分別為 14:02Copyright 2012 Zheng, Zhenlong & Chen, Rong, XMU6標(biāo)的資產(chǎn)支付連續(xù)紅利的期權(quán)價(jià)格的敏感性14:02Copyright 2012 Zheng, Zhenlong & Chen, Rong, XMU7標(biāo)的資產(chǎn)支付連續(xù)紅利的期權(quán)價(jià)格的敏感性14:02Copyright 2012 Zheng, Zhenlong & Chen, Rong, XMU8利率期權(quán)利率期權(quán)的分析和定價(jià)要困難得多,這是因?yàn)椋豪势跈?quán)的標(biāo)的資產(chǎn)利率的隨機(jī)過程比股票價(jià)
4、格或是匯率的變化要復(fù)雜得多,幾何布朗運(yùn)動(dòng)難以較好地捕捉利率的隨機(jī)運(yùn)動(dòng)規(guī)律。特定時(shí)刻的利率不是一個(gè)數(shù)值,而是整條利率期限結(jié)構(gòu),所以我們用以描述利率隨機(jī)運(yùn)動(dòng)規(guī)律的模型必須能捕捉整條利率曲線的特征。整條利率期限結(jié)構(gòu)上不同到期時(shí)刻的利率的波動(dòng)率都是互不相同的;最后,在利率期權(quán)中,利率本身影響期權(quán)的到期回報(bào),同時(shí)又要充當(dāng)回報(bào)的貼現(xiàn)率,這進(jìn)一步加大了利率期權(quán)的復(fù)雜性。 14:02Copyright 2012 Zheng, Zhenlong & Chen, Rong, XMU9利率期權(quán)的種類利率期權(quán)的種類交易所交易的利率期權(quán)場外交易的利率期權(quán)(案例15.4)內(nèi)嵌的利率期權(quán)14:02Copyright 201
5、2 Zheng, Zhenlong & Chen, Rong, XMU10Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Options on Stock Indices and CurrenciesChapter 1511Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Index OptionsThe most popular underlyi
6、ng indices in the U.S. are The S&P 100 Index (OEX and XEO)The S&P 500 Index (SPX)The Dow Jones Index times 0.01 (DJX)The Nasdaq 100 Index (NDX)Contracts are on 100 times index; they are settled in cash; OEX is American; the XEO and all other options are European.12Fundamentals of Futures and Options
7、 Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Index Option ExampleConsider a call option on an index with a strike price of 560Suppose 1 contract is exercised when the index level is 580What is the payoff?13Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010
8、Using Index Options for Portfolio InsuranceSuppose the value of the index is S0 and the strike price is KIf a portfolio has a b of 1.0, the portfolio insurance is obtained by buying 1 put option contract on the index for each 100S0 dollars heldIf the b is not 1.0, the portfolio manager buys b put op
9、tions for each 100S0 dollars heldIn both cases, K is chosen to give the appropriate insurance level14Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Example 1 Portfolio has a beta of 1.0It is currently worth $500,000The index currently stands at 1000What trade
10、is necessary to provide insurance against the portfolio value falling below $450,000?15Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Example 2 Portfolio has a beta of 2.0It is currently worth $500,000 and index stands at 1000The risk-free rate is 12% per annu
11、mThe dividend yield on both the portfolio and the index is 4%How many put option contracts should be purchased for portfolio insurance? 16Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010If index rises to 1040, it provides a 40/1000 or 4% return in 3 monthsTotal
12、 return (incl. dividends)=5%Excess return over risk-free rate=2%Excess return for portfolio=4%Increase in Portfolio Value=4+31=6%Portfolio value=$530,000Calculating Relation Between Index Level and Portfolio Value in 3 months 17Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright Jo
13、hn C. Hull 2010Determining the Strike Price (Table 15.2, page 329)An option with a strike price of 960 will provide protection against a 10% decline in the portfolio value18Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Currency OptionsCurrency options trade o
14、n the NASDAQ OMXThere also exists an active over-the-counter (OTC) marketCurrency options are used by corporations to buy insurance when they have an FX exposure19Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Range Forward ContractsHave the effect of ensuring
15、 that the exchange rate paid or received will lie within a certain rangeWhen currency is to be paid it involves selling a put with strike K1 and buying a call with strike K2When currency is to be received it involves buying a put with strike K1 and selling a call with strike K2Normally the price of
16、the put equals the price of the call 20Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Range Forward Contract continuedFigure 15.1, page 331 PayoffAsset PriceK1K2PayoffAsset PriceK1K2Short PositionLong Position21Fundamentals of Futures and Options Markets, 7th
17、Ed, Ch 15, Copyright John C. Hull 2010European Options on Stockswith Known Dividend YieldsWe get the same probability distribution for the stock price at time T in each of the following cases:1.The stock starts at price S0 and provides a dividend yield = q2.The stock starts at price S0eqT and provid
18、es no e22Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010European Options on StocksPaying Dividend YieldcontinuedWe can value European options by reducing the stock price to S0eqT and then behaving as though there is no dividend23Fundamentals of Futures and Opt
19、ions Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Extension of Chapter 10 Results(Equations 15.1 to 15.3)Lower Bound for calls:Lower Bound for putsPut Call Parity24Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Extension of Chapter 13 Results (Equations
20、15.4 and 15.5)25Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Valuing European Index OptionsWe can use the formula for an option on a stock paying a continuous dividend yieldSet S0 = current index levelSet q = average dividend yield expected during the life o
21、f the option26Using Forward/Futures Index Prices (equations 15.6 and 15.7, page 336)Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 201027Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Currency Options: The Foreign Interest R
22、ateWe denote the foreign interest rate by rfThe return measured in the domestic currency from investing in the foreign currency is rf times the value of the investmentThis shows that the foreign currency provides a yield at rate rf28Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyrig
23、ht John C. Hull 2010Valuing European Currency OptionsWe can use the formula for an option on a stock paying a continuous dividend yield : Set S0 = current exchange rate Set q = r29Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Formulas for European Currency Op
24、tions (Equations 15.8 and 15.9 page 337) 30Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Using Forward/Futures Exchange Rates(Equations 15.10 and 15.11, page 338) Using31Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010Th
25、e Binomial ModelS0u uS0d dS0 p(1 p )f = e-rDtpfu+(1 p)fd 32Fundamentals of Futures and Options Markets, 7th Ed, Ch 15, Copyright John C. Hull 2010The Binomial Modelcontinued33Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Futures OptionsChapter 1634Fundamental
26、s of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Mechanics of Call Futures OptionsWhen a call futures option is exercised the holder acquires A long position in the futuresA cash amount equal to the excess of the futures price at previous settlement over the strike price35
27、Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Mechanics of Put Futures OptionWhen a put futures option is exercised the holder acquiresA short position in the futuresA cash amount equal to the excess of the strike price over the futures price at previous sett
28、lement36Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010The PayoffsIf the futures position is closed out immediately:Payoff from call = F KPayoff from put = K Fwhere F is futures price at time of exercise37Fundamentals of Futures and Options Markets, 7th Ed, Ch
29、 16, Copyright John C. Hull 2010Potential Advantages of FuturesOptions over Spot OptionsFutures contract may be easier to trade than underlying assetExercise of the option does not lead to delivery of the underlying asset Futures options and futures usually trade in adjacent pits at exchangeFutures
30、options may entail lower transactions costs 38Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Put-Call Parity for European Futures Options (Equation 16.1, page 347)Consider the following two portfolios:1. European call plus Ke-rT of cash 2. European put plus lo
31、ng futures plus cash equal to F0e-rT They must be worth the same at time T so thatc+Ke-rT=p+F0 e-rT39Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Other RelationsF0 e-rT K C P (F0 K)e-rTp (F0 K)e-rT40Fundamentals of Futures and Options Markets, 7th Ed, Ch 16,
32、 Copyright John C. Hull 2010Futures Price = $33Option Price = $4Futures Price = $28Option Price = $0Futures price = $30Option Price=?Binomial Tree ExampleA 1-month call option on futures has a strike price of 29. 41Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 20
33、10Consider the Portfolio:long D futuresshort 1 call optionPortfolio is riskless when 3D 4 = 2D or D = 0.83D 4-2DSetting Up a Riskless Portfolio42Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Valuing the Portfolio( Risk-Free Rate is 6% )The riskless portfolio
34、is: long 0.8 futuresshort 1 call optionThe value of the portfolio in 1 month is 1.6The value of the portfolio today is 1.6e 0.06/12 = 1.59243Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Valuing the OptionThe portfolio that is long 0.8 futuresshort 1 option i
35、s worth 1.592The value of the futures is zeroThe value of the option must therefore be 1.59244Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Generalization of Binomial Tree Example (Figure 16.2, page 349)A derivative lasts for time T and is dependent on a futu
36、resF0d dF0u uF0 45Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Generalization(continued)Consider the portfolio that is long D futures and short 1 derivativeThe portfolio is riskless when F0u D - F0 D uF0d D- F0D d46Fundamentals of Futures and Options Markets
37、, 7th Ed, Ch 16, Copyright John C. Hull 2010Generalization(continued)Value of the portfolio at time T is F0u D F0D uValue of portfolio today is Hence = F0u D F0D ue-rT47Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Generalization(continued)Substituting for D
38、we obtain = p u + (1 p )d erT where 48Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010Growth Rates For Futures PricesA futures contract requires no initial investmentIn a risk-neutral world the expected return should be zeroThe expected growth rate of the futur
39、es price is therefore zeroThe futures price can therefore be treated like a stock paying a dividend yield of rThis is consistent with the results we have presented so far (put-call parity, bounds, binomial trees) 49Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 20
40、10Valuing European Futures OptionsWe can use the formula for an option on a stock paying a continuous yieldSet S0 = current futures price (F0)Set q = domestic risk-free rate (r )Setting q = r ensures that the expected growth of F in a risk-neutral world is zero50Fundamentals of Futures and Options M
41、arkets, 7th Ed, Ch 16, Copyright John C. Hull 2010Blacks Model (Equations 16.7 and 16.8, page 351)The formulas for European options on futures are known as Blacks model51Fundamentals of Futures and Options Markets, 7th Ed, Ch 16, Copyright John C. Hull 2010How Blacks Model is Used in PracticeEuropea
42、n futures options and spot options are equivalent when future contract matures at the same time as the otion.This enables Blacks model to be used to value a European option on the spot price of an asset52Using Blacks Model Instead of Black-Scholes (Example 16.5, page 352)Consider a 6-month European call option on spot gold6-month futures price is 620, 6-month risk-free rate is 5%, strike price is 600, and volatility of futures price is 20%Value of option is given by Blacks model with
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東理工學(xué)院《中西跨文化交際》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東警官學(xué)院《材料化學(xué)實(shí)驗(yàn)B》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東機(jī)電職業(yè)技術(shù)學(xué)院《中學(xué)化學(xué)教學(xué)綜合技能訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工程職業(yè)技術(shù)學(xué)院《數(shù)字化圖像處理Photoshop》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東第二師范學(xué)院《建筑施工CAD》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東財(cái)貿(mào)職業(yè)學(xué)院《建筑設(shè)計(jì)4》2023-2024學(xué)年第一學(xué)期期末試卷
- 《泌尿系統(tǒng)疾病診治》課件
- 《落落的微笑》課件
- 廣東碧桂園職業(yè)學(xué)院《電視節(jié)目播音主持》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣安職業(yè)技術(shù)學(xué)院《設(shè)計(jì)基礎(chǔ)理論》2023-2024學(xué)年第一學(xué)期期末試卷
- 毛坯房驗(yàn)房專用表格詳細(xì)
- 江西省特種作業(yè)人員體檢表(共1頁)
- 幼兒園大班主題《我自己》個(gè)別化學(xué)習(xí)
- 派出所立體化勤務(wù)指揮室建設(shè)模式探析――以大連市公
- 物資設(shè)備部工作述職報(bào)告
- 單值移動(dòng)極差圖(空白表格)
- 精品資料(2021-2022年收藏)龍門吊軌道基礎(chǔ)施工方案
- 畫廊與畫家合作協(xié)議書范本
- 全口義齒-印模與模型-課件PPT
- 地方課程六年級上冊
- 中科院大連化物所模板PPT課件
評論
0/150
提交評論