下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、南昌大亨NANCHANGUNIVERSITY課程名稱:學(xué)術(shù)英語題目:AStudyofEnergyEfficientCloudComputingPoweredby_WirelessEnergyTransfer英語班級(jí):理工1615班專業(yè)/年級(jí):物聯(lián)網(wǎng)工程161班姓名/學(xué)號(hào):(47L二零一八年六月AStudyofEnergyEfficientCloudComputingPoweredbyWirelessEnergyTransferAStudyofEnergyEf?cientMobileCloudComputingPoweredbyWirelessEnergyTransferAbstractAchi
2、evinglongbatterylivesorevenself-sustainabilityhasbeenalongstandingchallengefordesigningmobiledevices.Thisstudypresentsanovelsolutionthatseamlesslyintegratestwotechnologies,mobilecloudcomputingandmicrowavepowertransfer(MPT),toenablecomputationinpassivelow-complexitydevicessuchassensorsandwearablecomp
3、utingdevices.Specifically,consideringasingle-usersystem,abasestation(BS)eithertransferspowertooroffloadscomputationfromamobiletothecloud;themobileusesharvestedenergytocomputegivendataeitherlocallyorbyoffloading.AframeworkforenergyefficientcomputingisproposedthatcomprisesasetofpoliciesforcontrollingC
4、PUcyclesforthemodeoflocalcomputing,timedivisionbetweenMPTandoffloadingfortheothermodeofoffloading,andmodeselection.GiventheCPU-cyclestatisticsinformationandchannelstateinformation(CSI),thepoliciesaimatmaximizingtheprobabilityofsuccessfullycomputinggivendata,calledcomputingprobability,undertheenergyh
5、arvestinganddeadlineconstraints.Furthermore,thisstudyrevealsthatthetwosimplesolutionstoachievetheobjecttosupportcomputationloadallocationovermultiplechannelrealizations,whichfurtherincreasesthecomputingprobability.Last,thetwokindsofmodessuggestthatthefeasibilityofwirelesslypoweredmobilecloudcomputin
6、gandthegainofitsoptimalcontrol.Andthefutureaspecttostudyissimplytobeanswer.Keywords:wirelesspowertransfer;energyharvestingcommunications;mobilecloudcomputing;energyefficientcomputingAStudyofEnergyEfficientCloudComputingPoweredbyWirelessEnergyTransferIntroductionMobilecloudcomputing(MCC)asanemergingc
7、omputingparadigmintegratescloudcomputingandmobilecomputingtoenhancethecomputationperformanceofmobiledevices.TheobjectiveofMCCistoextendpowerfulcomputingcapabilityoftheresource-richcloudstotheresource-constrainedmobiledevices(e.g.,laptop,tabletandsmartphone)soastoreducecomputationtime,conservelocalre
8、sources,especiallybattery,andextendstoragecapacity.Toachievethisobjective,MCCneedstotransferresource-intensivecomputationsfrommobiledevicestoclouds,referredtoascomputationoffloading.Thecoreofcomputationoffloadingistodecideonwhichcomputationtasksshouldbeexecutedonthemobiledeviceoronthecloud,andhowtos
9、chedulelocalandcloudresourcetoimplementtaskoffloading.TheexplosivegrowthofInternetofThings(IOT)andmobilecommunicationisleadingtothedeploymentoftensofbillionsofcloud-basedmobilesensorsandwearablecomputingdevicesinnearfuture(Huang&Chae,2010).Prolongingtheirbatterylivesandenhancingtheircomputingcap
10、abilitiesaretwokeydesignchallenges.Theycanbetackledbytwopromisingtechnologies:microwavepowertransfer(MPT)forpoweringthemobilescomputation-intensivetasksfromthemobilestothecloudandmobilecomputationoffloading(MCO).Twotechnologiesareseamlesslyintegratedinthecurrentworktodevelopanoveldesignframeworkforr
11、ealizingwirelesslypoweredmobilecloudcomputingunderthecriterionofmaximizingtheprobabilityofsuccessfullycomputinggivendata,calledcomputingprobability.TheframeworkisfeasiblesinceMPThasbeenproveninvariousexperimentsforpoweringsmalldevicessuchassensorsorevensmall-scaleairplanesandhelicopters.Furthermore,
12、sensorsandwearablecomputingdevicestargetedintheframeworkareexpectedtobeconnectedbythecloud-basedIOTinthefuture,providingasuitableplatformforrealizingMCO.MaterialsMCOhasbeenanactiveresearchareaincomputersciencewhereresearchhasfocusedondesigningmobile-cloudsystemsandsoftwarearchitectures,virtualmachin
13、emigrationdesigninthecloudandcodepartitioningtechniquesinthemobilesforreducingtheenergyconsumptionandimprovingthecomputingperformanceofmobiles.Nevertheless,implementationofMCOrequiresdatatransmissionandmessagepassingoverwirelesschannels,incurringtransmissionpowerconsumption.Theexistenceofsuchatradeo
14、ffhasmotivatedcross-disciplinaryresearchonjointlydesigningMCOandadaptivetransmissionalgorithmstomaximizethemobileenergysavings.Astochasticcontrolalgorithmwasproposedforadaptingtheoffloadedcomponentsofanapplicationtoatime-varyingwirelesschannel.Furthermore,multiusercomputationoffloadinginamulti-cells
15、ystemwasexploredbyShinohara(2014),wheretheradioandcomputationalresourceswerejointlyallocatedformaximizingtheenergysavingsunderthelatencyconstraints.AccordingtoSwan(2012),thethreshold-basedoffloadingpolicywasderivedforthesystemwithintermittentconnectivitybetweenthemobileandcloud.Lastly,theCPU-cyclefr
16、equenciesarejointlycontrolledwithMCOgivenamoreskilledandincreasinglyappropriateAStudyofEnergyEfficientCloudComputingPoweredbyWirelessEnergyTransferwirelesschannel.TheframeworkisfurtherdevelopedinthecurrentworktoincludethenewfeatureofMPT(Kostaetal.,2012).Thisintroducesseveralnewdesignchallenges.Among
17、others,thealgorithmicdesignoflocalcomputingandoffloadingbecomesmorecomplexundertheenergyharvestingconstraintduetoMPT,whichpreventsenergyconsumptionfromexceedingtheamountofharvestedenergyateverytimeinstant.AnotherchallengeisthatMPTandoffloadingtimesharethemobileantennaandthetimedivisionhastobeoptimiz
18、ed.Nowthetechnologyisbeingfurtherdevelopedtopowerwirelesscommunications.Thishasresultedintheemergenceofanactivefieldcalledsimultaneouswirelessinformationandpowertransfer(SWIPT).TheMPTtechnologyhasbeendevelopedforpoint-to-pointhighpowertransmissioninthepastdecades(Brown,1984).Furthermore,existingwire
19、lessnetworkssuchascognitiveradioandcellularnetworkshavebeenredesignedtofeatureMPT.MostpriorworkonSWIPTaimsatoptimizingcommunicationtechniquestomaximizetheMPTefficiencyandsystemthroughput.Incontrast,thecurrentworkfocusesonoptimizingthelocalcomputingandoffloadingunderadifferentdesigncriterionofmaximum
20、computingprobability(Huang&Lau,2014).MethodsandResultsConsiderasingle-usersystemcomprisingonemulti-antennabasestation(BS)usingtransmit/receivebeamformingfortransferringpowertoasingle-antennamobileorrelayingoffloadeddatafromthemobiletothecloud.Tocomputeafixedamountofdata,themobileoperatesinoneoft
21、hetwoavailablemodes:Localcomputingandoffloading:inthemodeoflocalcomputing,MPToccurssimultaneouslyascomputingbasedonthecontrollableCPU-cyclefrequencies.Nevertheless,inthemodeofoffloading,thegivencomputationdurationisadaptivelypartitionedforseparateMPTandoffloadingsincetheysharethemobileantenna(Shinoh
22、ara,2014).AssumethatthemobilehastheknowledgeofstatisticsinformationofCPUcyclesandchannelstateinformation(CSI).Theindividualmodesaswellasmodeselectionareoptimizedformaximizingthecomputingprobabilityundertheenergyharvestinganddeadlineconstraints.Fortractability,themetricistransformedintoequivalentones
23、,namelyaveragemobileenergyconsumptionandmobileenergysavings,forthemodesoflocalcomputingandoffloading,respectively.Comparedwiththepriorwork,thecurrentworkintegratesMPTwiththemobilecloudcomputing,whichintroducesnewtheoreticalchallenges.Inparticular,theenergyharvestingconstraintarisingfromMPTmakestheop
24、timizationproblemforlocalcomputingnon-convex.Totacklethechallenge,theconvexrelaxationtechniqueisappliedwithoutcompromisingtheoptimalityofthesolution.ItisshowninthesequelthatthelocalcomputingpolicyisaspecialcaseofthecurrentworkwherethetransferredpowerissufficientlyhighbySwan(2012).Furthermore,thecase
25、ofdynamicchannelformobilecloudcomputingisexplored.Approximationmethodsareusedforderivingthesimpleandclose-to-optimalpolicies.Mobilemodeselection:Theaboveresultsarecombinedtoselectthemobilemodeformaximizingthecomputingprobability.Givenfeasiblecomputinginbothmodes,theonlyoneAStudyofEnergyEfficientClou
26、dComputingPoweredbyWirelessEnergyTransferyieldingthelargerenergysavingsispreferredandtheselectioncriterionisderivedintermsofthresholdsontheBStransmissionpoweraswellasthedeadlineforcomputing(Huangetal.,2012).Optimaldataallocationforadynamicchannel:Last,theaboveresultsareextendedtothecaseofadynamiccha
27、nnel,modeledasindependentandidenticallydistributed.blockfading,andnon-causalCSIatthemobile(acquiredfrome.g.,channelprediction).Theproblemofoptimizinganindividualmobilemode(localcomputingoroffloading)isformulatedbasedonthemaster-and-slavemodelusingthesamemetricasthefixed-channelcounterpart(Kumar&
28、Liu,2013).ConclusionWirelessandmobilecomputingtechnologiesprovidemorepossibilitiesforaccessingservicesconveniently.Mobiledeviceswillbeimprovedintermsofpower,CPU,andstorage.Mobilecloudcomputinghasemergedasanewparadigmandextensionofcloudcomputing.Bytwokindsofavailablemodes,wecanpurelyknowoftheEnergyEf
29、?cientMobileCloudComputing.ThroughmystudyfortheMobileCloudComputing,wearehereexposingtwosimplesolutionstosolvethisproblem.Althoughmyresearchisprettybasic,itstillbenefittheprocessofthedevelopmentformobilecloudcomputingandhowtomakeitenergyefficient.Webelievethatexploringotheralternatives,suchasintrodu
30、cingamiddlewarebasedarchitectureusinganoptimizingoffloadingalgorithm,couldhelpbettertheavailableframeworksandprovidemoreefficientandmoreflexiblesolutionstotheMCCusers.Weknowthatthekindoftechnologywillplayanincreasingimportantroleinourdailylifeinthefuture.Bythisstudy,webetterknowofthenewestdevelopmen
31、tinoursciencearea.Thisworkcanbeextendedtoseveralinterestingdirections:First,full-duplextransmissioncanbeimplementedinthepro-posedsystemtosupportsimultaneousMPTandcomputationoffloadingtoimprovethepowertransferefficiency.Second,thecurrentworkfocusingonasingle-computingtaskcanbegeneralizedtothescenario
32、ofcomputingamulti-taskprogram,whichinvolvesprogrampartitioningandsimultaneouslocalcomputingandoffloading.Last,itisinterestingtoextendthecurrentdesignforsingle-usermobilecloudcomputingsystemtothemultiusersystemthatrequiresjointdesignofradioandcomputationalresourceallocationformobilecloudcomputing.ReferencesBrown,W.(1984).Thehistoryo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防報(bào)警系統(tǒng)升級(jí)清工合同標(biāo)準(zhǔn)文本3篇
- 年度印刷品、記錄媒介復(fù)制品產(chǎn)業(yè)分析報(bào)告
- 無縫鋼管施工方案
- 2025年金融理財(cái)產(chǎn)品銷售合同修訂與風(fēng)險(xiǎn)披露機(jī)制2篇
- 2025年度離婚財(cái)產(chǎn)分割協(xié)議書及無形資產(chǎn)評(píng)估范本3篇
- CISP0501信息安全法規(guī)、政策和標(biāo)準(zhǔn)-含網(wǎng)絡(luò)安全法
- 2024離婚冷靜期婚姻家庭關(guān)系咨詢與輔導(dǎo)服務(wù)合同3篇
- 二零二五版反擔(dān)保動(dòng)產(chǎn)質(zhì)押倉儲(chǔ)管理服務(wù)合同2篇
- 路口施工方案
- 2025年生態(tài)旅游PPP項(xiàng)目合同范本3篇
- 2024至2030年中國(guó)膨潤(rùn)土行業(yè)投資戰(zhàn)略分析及發(fā)展前景研究報(bào)告
- 【地理】地圖的選擇和應(yīng)用(分層練) 2024-2025學(xué)年七年級(jí)地理上冊(cè)同步備課系列(人教版)
- 2024年深圳中考數(shù)學(xué)真題及答案
- 土方轉(zhuǎn)運(yùn)合同協(xié)議書
- Module 3 Unit 1 Point to the door(教學(xué)設(shè)計(jì))-2024-2025學(xué)年外研版(三起)英語三年級(jí)上冊(cè)
- 智能交通信號(hào)燈安裝合同樣本
- 安全生產(chǎn)法律法規(guī)清單(2024年5月版)
- 江蘇省連云港市2023-2024學(xué)年八年級(jí)下學(xué)期期末道德與法治試卷(含答案解析)
- 2024年大學(xué)試題(宗教學(xué))-佛教文化筆試考試歷年高頻考點(diǎn)試題摘選含答案
- JBT 14588-2023 激光加工鏡頭 (正式版)
- 七年級(jí)語文下冊(cè)專項(xiàng)練習(xí)知識(shí)(對(duì)聯(lián))
評(píng)論
0/150
提交評(píng)論