七年級(jí)數(shù)學(xué)多邊形華師大版_第1頁
七年級(jí)數(shù)學(xué)多邊形華師大版_第2頁
七年級(jí)數(shù)學(xué)多邊形華師大版_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、多邊形【目標(biāo)預(yù)覽】知識(shí)技能:理解多邊形的概念數(shù)學(xué)思考:能運(yùn)用三角形的有關(guān)知識(shí)來研究多邊形問題解決問題:能將多邊形的問題轉(zhuǎn)化為三角形的問題來解決情感態(tài)度:體會(huì)數(shù)學(xué)上的轉(zhuǎn)化思想對(duì)解決問題的幫助【教學(xué)重點(diǎn)和難點(diǎn)】重點(diǎn):多邊形的相關(guān)概念難點(diǎn):能靈活運(yùn)用三角形的有關(guān)知識(shí)解決多邊形問題【教學(xué)設(shè)計(jì)】活動(dòng)1多邊形的概念1 .提出問題我們已經(jīng)學(xué)習(xí)了三角形,它是由三條線段首尾順次連接而成的圖形。如果用4條、5條、6條呢,甚至更多的線段首尾順次連接得到的是什么圖形,它們有什么性質(zhì)?2 .觀察、思考、交流、討論3 .引導(dǎo)學(xué)生總結(jié)(1)在平面內(nèi),由一些線段首尾順次連接組成的圖形叫做多邊形。多邊形相鄰兩邊組成的角叫做它的

2、內(nèi)角,多邊形的邊與它鄰邊的延長線所組成的角叫做外角。(2)多邊形的分類:多邊形按其組成圖形的線段的條數(shù)分類,一個(gè)多邊形的n條線段構(gòu)成,那么這個(gè)多邊形就叫做n邊形。(3)多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。一個(gè)n邊形從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線的條數(shù)為(n-3)條,其所有的對(duì)角線為n(n3)條。24 .教師點(diǎn)評(píng)(1)一個(gè)n邊形有n個(gè)頂點(diǎn),有n條邊,有n個(gè)內(nèi)角,有n個(gè)外角。(通常計(jì)算外角時(shí)每一個(gè)頂點(diǎn)處只取一個(gè)外角)(2)多邊形的對(duì)角線的計(jì)算有兩種情形:一是已知邊數(shù)求對(duì)角線的條數(shù);二是已知對(duì)角線的條數(shù)反過來求對(duì)邊形的邊數(shù)。5 .范例精析1)例1已知一個(gè)n邊形有n條對(duì)角線,

3、求n。2)分析:由n邊形的對(duì)角線條數(shù)的計(jì)算公式可知n(n-3)等于5由此解方程,則不難求2得n的值。3)解答:依題意,得n(n-3)=n2.nw0n-3=2n=54)小結(jié):由多邊形的邊數(shù)與對(duì)角線的關(guān)系求其邊數(shù),通常采用列方程求解?;顒?dòng)2凸多邊形與正多邊形1.提出問題比較圖中兩個(gè)圖形,思考兩者的區(qū)另I。3 .引導(dǎo)學(xué)生總結(jié)(1)凸多邊形的定義:畫出多邊形的任何一條邊所在的直線,如果多邊形都在這條直線的同側(cè),那么這個(gè)多邊形就是凸多邊形。(2)正多邊形的定義:各角都相等,各邊都相等的多邊形叫做正多邊形。4 .教師點(diǎn)評(píng)(1)凸多邊形定義中應(yīng)注意任何一條邊所在的直線,且多邊形都在這條直線的同側(cè)”的含義,它

4、是指多邊形任意一邊,即是所有的邊所在的直線,且多邊形都在這些直線的同側(cè),切記不要理解為僅相對(duì)于某一條邊所在的直線而言。(2)正多邊形必須具備兩個(gè)條件,一是所有的邊都相等;二是所有的角都相等,二者缺一不可。但三角形除外,若三角形的三內(nèi)角相等,則必有三邊相等,反過來也成立。5 .范例精析1)例2(1)下圖中,不是凸多邊形的是()(2)小學(xué)中學(xué)過的下列圖形中不可能是正多邊形的是()A.三角形B.長方形C.四邊形D.梯形2)分析:(1)根據(jù)凸多邊形的定義,多邊形必在其任意一邊所在直線的同側(cè),換句話說,畫出多邊形任一邊所在的直線。該直線均不與圖形的任意一邊相交,由此不難判斷求解。(2)判斷哪種圖形不可能是正多邊形,即是判斷哪種圖形的四條邊或者四個(gè)角中某一量不可能相等,這根據(jù)小學(xué)所學(xué)知識(shí)不難解決。3)解答:選D4)小結(jié):解答概念問題,即是利用概念求解。但應(yīng)注意抓住概念的基本特征?!疽辉嚿?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論