初中幾何輔助線大全51054_第1頁
初中幾何輔助線大全51054_第2頁
初中幾何輔助線大全51054_第3頁
初中幾何輔助線大全51054_第4頁
初中幾何輔助線大全51054_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、例1:已知如圖1-1:D、E為ABC內(nèi)兩點,求證:ABACBDDECE. 例如:如圖2-1:已知D為ABC內(nèi)的任一點,求證:BDCBAC。分析:因為BDC與BAC不在同一個三角形中,沒有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使BDC處于在外角的位置,BAC處于在內(nèi)角的位置;例如:如圖3-1:已知AD為ABC的中線,且12,34,求證:BECFEF。注意:當(dāng)證題有角平分線時,??煽紤]在角的兩邊截取相等的線段,構(gòu)造全等三角形,然后用全等三角形的性質(zhì)得到對應(yīng)元素相等。四、有以線段中點為端點的線段時,常延長加倍此線段,構(gòu)造全等三角形。例如:如圖4-1:AD為ABC的中線,且12,34,求證:BE

2、CFEF 注意:當(dāng)涉及到有以線段中點為端點的線段時,可通過延長加倍此線段,構(gòu)造全等三角形,使題中分散的條件集中。五、有三角形中線時,常延長加倍中線,構(gòu)造全等三角形。例如:如圖5-1:AD為 ABC的中線,求證:ABAC2AD。 練習(xí):已知ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向形外作等腰直角三角形,如圖5-2, 求證EF2AD。六、截長補(bǔ)短法作輔助線。例如:已知如圖6-1:在ABC中,ABAC,12,P為AD上任一點。求證:ABACPBPC。七、延長已知邊構(gòu)造三角形:例如:如圖7-1:已知ACBD,ADAC于A ,BCBD于B, 求證:ADBC八 、連接四邊形的對角線,把

3、四邊形的問題轉(zhuǎn)化成為三角形來解決。九、有和角平分線垂直的線段時,通常把這條線段延長。例如:如圖9-1:在RtABC中,ABAC,BAC90,12,CEBD的延長于E 。求證:BD2CE 十、連接已知點,構(gòu)造全等三角形。例如:已知:如圖10-1;AC、BD相交于O點,且ABDC,ACBD,求證:AD。十一、取線段中點構(gòu)造全等三有形。例如:如圖11-1:ABDC,AD 求證:ABCDCB。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。線段和差不等式

4、,移到同一三角去。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。例1 如圖1-2,AB/CD,BE平分BCD,CE平分BCD,點E在AD上,求證:BC=AB+CD。例2 已知:如圖1-3,AB=2AC,BAD=CAD,DA=DB,求證DCAC分析:此題還是利用角平分線來構(gòu)造全等三角形。構(gòu)造的方法還是截取線段相等。其它問題自已證明。例3 已知:如圖1-4,在ABC中,C=2B,AD平分BAC,求證:AB-AC=CD試試看可否把短的延長來證明呢?例1 如圖2-1,已知ABAD, BAC=FAC,CD=BC。求證:ADC+B=180分析:可由C向BAD的兩邊作垂線。近而證ADC與B

5、之和為平角。例2 如圖2-2,在ABC中,A=90,AB=AC,ABD=CBD。求證:BC=AB+AD分析:過D作DEBC于E,則AD=DE=CE,則構(gòu)造出全等三角形,從而得證。此題是證明線段的和差倍分問題,從中利用了相當(dāng)于截取的方法。例3 已知如圖2-3,ABC的角平分線BM、CN相交于點P。求證:BAC的平分線也經(jīng)過點P。分析:連接AP,證AP平分BAC即可,也就是證P到AB、AC的距離相等。例1 已知:如圖3-1,BAD=DAC,ABAC,CDAD于D,H是BC中點。求證:DH=(AB-AC)分析:延長CD交AB于點E,則可得全等三角形。問題可證。例2 已知:如圖3-2,AB=AC,BA

6、C=90,AD為ABC的平分線,CEBE.求證:BD=2CE。分析:給出了角平分線給出了邊上的一點作角平分線的垂線,可延長此垂線與另外一邊相交,近而構(gòu)造出等腰三角形。例3已知:如圖3-3在ABC中,AD、AE分別BAC的內(nèi)、外角平分線,過頂點B作BFAD,交AD的延長線于F,連結(jié)FC并延長交AE于M。求證:AM=ME。分析:由AD、AE是BAC內(nèi)外角平分線,可得EAAF,從而有BF/AE,所以想到利用比例線段證相等。例4 已知:如圖3-4,在ABC中,AD平分BAC,AD=AB,CMAD交AD延長線于M。求證:AM=(AB+AC)分析:題設(shè)中給出了角平分線AD,自然想到以AD為軸作對稱變換,作

7、ABD關(guān)于AD的對稱AED,然后只需證DM=EC,另外由求證的結(jié)果AM=(AB+AC),即2AM=AB+AC,也可嘗試作ACM關(guān)于CM的對稱FCM,然后只需證DF=CF即可。(四)、以角分線上一點做角的另一邊的平行線有角平分線時,常過角平分線上的一點作角的一邊的平行線,從而構(gòu)造等腰三角形。或通過一邊上的點作角平分線的平行線與另外一邊的反向延長線相交,從而也構(gòu)造等腰三角形。如圖4-1和圖4-2所示。12ACDB例4 如圖,ABAC, 1=2,求證:ABACBDCD。例5 如圖,BCBA,BD平分ABC,且AD=CD,求證:A+C=180。BDCAABECD例6 如圖,ABCD,AE、DE分別平分

8、BAD各ADE,求證:AD=AB+CD。練習(xí):1. 已知,如圖,C=2A,AC=2BC。求證:ABC是直角三角形。CAB2已知:如圖,AB=2AC,1=2,DA=DB,求證:DCACABDC12 3已知CE、AD是ABC的角平分線,B=60,求證:AC=AE+CDAEBDC4已知:如圖在ABC中,A=90,AB=AC,BD是ABC的平分線,求證:BC=AB+ADABCDDAECB例1如圖,AC平分BAD,CEAB,且B+D=180,求證:AE=AD+BE。例2如圖,在四邊形ABCD中,AC平分BAD,CEAB于E,AD+AB=2AE,求證:ADC+B=180例3已知:如圖,等腰三角形ABC中,

9、AB=AC,A=108,BD平分ABC。DCBA求證:BC=AB+DC。MBDCA例4如圖,已知RtABC中,ACB=90,AD是CAB的平分線,DMAB于M,且AM=MB。求證:CD=DB。1如圖,ABCD,AE、DE分別平分BAD各ADE,求證:AD=AB+CD。EDCBA2.如圖,ABC中,BAC=90,AB=AC,AE是過A的一條直線,且B,C在AE的異側(cè),BDAE于D,CEAE于E。求證:BD=DE+CE例1如圖2,ABC中,AD是中線,延長AD到E,使DE=AD,DF是DCE的中線。已知ABC的面積為2,求:CDF的面積。(二)、由中點應(yīng)想到利用三角形的中位線例2如圖3,在四邊形A

10、BCD中,AB=CD,E、F分別是BC、AD的中點,BA、CD的延長線分別交EF的延長線G、H。求證:BGE=CHE。(三)、由中線應(yīng)想到延長中線例3圖4,已知ABC中,AB=5,AC=3,連BC上的中線AD=2,求BC的長。例4如圖5,已知ABC中,AD是BAC的平分線,AD又是BC邊上的中線。求證:ABC是等腰三角形。(四)、直角三角形斜邊中線的性質(zhì)例5如圖6,已知梯形ABCD中,AB/DC,ACBC,ADBD,求證:AC=BD。(五)、角平分線且垂直一線段,應(yīng)想到等腰三角形的中線例6如圖7,ABC是等腰直角三角形,BAC=90,BD平分ABC交AC于點D,CE垂直于BD,交BD的延長線于

11、點E。求證:BD=2CE。例一:如圖4-1:AD為ABC的中線,且1=2,3=4,求證:BE+CFEF。例二:如圖5-1:AD為ABC的中線,求證:AB+AC2AD。練習(xí):1 如圖,AB=6,AC=8,D為BC 的中點,求AD的取值范圍。BADC862 如圖,AB=CD,E為BC的中點,BAC=BCA,求證:AD=2AE。BECDA 3 如圖,AB=AC,AD=AE,M為BE中點,BAC=DAE=90。求證:AMDC。DMCDEDADBD4,已知ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向外作等腰直角三角形,如圖5-2,求證EF=2AD。 ABDCEF5已知:如圖AD為ABC的中線,AE=EF,求證:BF=AC 1:(“希望杯”試題)已知,如圖ABC中,AB=5,AC=3,則中線AD的取值范圍是_.2:如圖,ABC中,E、F分別在AB、AC上,DEDF,D是中點,試比較BE+CF與EF的大小. 3:如圖,ABC中,BD=DC=AC,E是DC的中點,求證:AD平分BAE.(二)、截長補(bǔ)短1.如圖,中,AB=2AC,AD平分,且A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論