中國農業(yè)科學院601高數考試大綱_第1頁
中國農業(yè)科學院601高數考試大綱_第2頁
中國農業(yè)科學院601高數考試大綱_第3頁
中國農業(yè)科學院601高數考試大綱_第4頁
中國農業(yè)科學院601高數考試大綱_第5頁
免費預覽已結束,剩余1頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、1 / 6 中國農業(yè)科學院2013 年碩士研究生統(tǒng)一入學考試自命題科目考試大綱科目代碼:601 考試科目:高等數學一、考查目標要求考生比較系統(tǒng)地理解高等數學的基本概念和基本理論,掌握數學的基本方法,具備一定的運算能力、抽象概括能力、邏輯思維能力、空間想象力和綜合運用所學知識分析問題和解決實際問題的能力。二、考試形式和試卷結構1試卷滿分及考試時間試卷滿分為150 分,考試時間為180 分鐘。2答題方式閉卷、筆試。3試卷內容結構考試內容包括微積分、線性代數和概率論與數理統(tǒng)計三部分。其中微積分的分值約占60%左右,線性代數和概率論與數理統(tǒng)計各占20%。題型包括單項選擇、填空、解答題等。三、考試大綱微

2、積分部分(一)函數、極限、連續(xù)考試內容函數的概念及表示法,函數的有界性、單調性、周期性和奇偶性,復合函數、反函數、分段函數和隱函數,基本初等函數的性質及其圖形,初等函數,函數關系的建立。數列極限與函數極限的定義及其性質,函數的左極限和右極限,無窮小量和無窮大量的概念及其關系,無窮小量的性質及無窮小量的比較,極限的四則運算,極限存在的兩個準則:單調有界準則和夾逼準則,兩個重要極限:0sin1lim1,lim(1)xxxxexx函數連續(xù)的概念,函數間斷點的類型,初等函數的連續(xù)性,閉區(qū)間上連續(xù)函數的性質??荚囈?理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系。2了解函數的有界性、單調性

3、、周期性和奇偶性。3理解復合函數及分段函數的概念,了解反函數及隱函數的概念。2 / 6 4掌握基本初等函數的性質及其圖形,了解初等函數的概念。5了解數列極限和函數極限(包括左極限和右極限)的概念。6了解極限的性質與極限存在的兩個準則,掌握極限四則運算法則,掌握利用兩個重要極限求極限的方法。7理解無窮小量的概念和基本性質,掌握無窮小量的比較方法,了解無窮大量的概念及其無窮小量的關系。8理解函數連續(xù)性的概念(含左連續(xù)和右連續(xù)),會判別函數間斷點的類型。10了解連續(xù)函數的性質和初等函數的連續(xù)性,理解閉區(qū)間上連續(xù)函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質。(二)一元函數微分學

4、考試內容導數和微分的概念,導數的幾何意義,函數的可導性與連續(xù)性之間的關系,平面曲線的切線和法線,導數和微分的四則運算,基本初等函數的導數,復合函數和隱函數的微分法,高階導數,微分中值定理,洛必達法則,函數單調性的判別,函數的極值,函數圖形的凹凸性、拐點及漸近線,函數的最大值和最小值??荚囈?理解導數的概念及可導性與連續(xù)性之間的關系,了解導數的幾何意義,會求平面曲線的切線方程和法線方程。2掌握基本初等函數的導數公式、導數的四則運算法則及復合函數的求導法則,會求分段函數的導數,會求隱函數的導數。3了解高階導數的概念,掌握二階導數的求法。4了解微分的概念以及導數與微分之間的關系,會求函數的微分。5

5、理解羅爾( rolle)定理和拉格朗日(lagrange)中值定理,掌握這兩個定理的簡單應用。6會用洛必達法則求極限。7掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用。8 會用導數判斷函數圖形的凹凸性(在區(qū)間( , )a b內, 設函數 f(x) 具有二階導數, 當( )0fx時,( )f x的圖形是凹的;當( )0fx時,( )f x的圖形是凸的),會求函數圖形的拐點和漸近線(水平、鉛直漸近線)。(三)一元函數積分學考試內容原函數和不定積分的概念,不定積分的基本性質,基本積分公式,定積分的概念和基本性質,定積分中值定理,積分上限的函數及其導數,牛頓萊

6、布尼茨( newton-leibniz )公式,不定積分和定積分的換元積分法與分部積分法,反常(廣義)積分,定積分的應用??荚囈?理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和分部積分法。2了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數并會求它的導數,掌握牛頓 萊布尼茨公式以及定積分的換元積分法和分部積分法。3會利用定積分計算平面圖形的面積和旋轉體的體積。3 / 6 4了解無窮區(qū)間上的反常積分的概念,會計算無窮區(qū)間上的反常積分。(四)多元函數微積分學考試內容多元函數的概念,二元函數的幾何意義,二元函數的極限與連續(xù)的概念,多元函

7、數偏導數的概念與計算,多元復合函數的求導法與隱函數求導法,二階偏導數,全微分,多元函數的極值和條件極值,二重積分的概念、基本性質和計算??荚囈?了解多元函數的概念,了解二元函數的幾何意義。2了解二元函數的極限與連續(xù)的概念。3了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,會求多元隱函數的偏導數。4了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件。5了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標、極坐標)。(五)常微分方程考試內容常微分方程的基本概念,變量可分離的微分方程,一階線性微分方程考試要求1

8、了解微分方程及其階、解、通解、初始條件和特解等概念。2掌握變量可分離的微分方程及一階線性微分方程的求解方法。線性代數部分(一)行列式考試內容行列式的概念和基本性質,行列式按行(列)展開定理??荚囈?了解行列式的概念,掌握行列式的性質。2會應用行列式的性質和行列式按行(列)展開定理計算行列式。(二)矩陣考試內容矩陣的概念,矩陣的線性運算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉置,逆矩陣的概念和性質,矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價??荚囈?理解矩陣的概念,了解單位矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣、反對稱矩陣及正交矩陣

9、等的定義和性質。2掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質。3理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,了解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。4了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。4 / 6 (三)向量考試內容向量的概念,向量的線性組合與線性表示,向量組的線性相關與線性無關,向量組的極大線性無關組,等價向量組,向量組的秩,向量組的秩與矩陣的秩之間的關系考試要求1了解向量的概念,掌握向量的加法和數乘運算法則。2理解向量的線性組合與線性表示、向量組線性相關、線

10、性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法。3理解向量組的極大線性無關組和秩的概念,會求向量組的極大線性無關組及秩。4了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩之間的關系。(四)線性方程組考試內容線性方程組的克萊姆(crammer)法則,齊次線性方程組有解和無解的判定,齊次線性方程組的基礎解系和通解,非齊次線性方程組的解與相應齊次線性方程組的解之間的關系,非齊次線性方程組的通解。考試要求1會用克萊姆法則解線性方程組。2掌握非齊次線性方程組有解和無解的判定方法。3 理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法。4了解非齊次線性方程組

11、的結構及通解的概念。5掌握用初等行變換求解線性方程組的方法。(五)矩陣的特征值和特征向量考試內容矩陣的特征值和特征向量的概念、性質,相似矩陣的概念及性質,矩陣可相似對角化的充分必要條件及相似對角矩陣,實對稱矩陣的特征值、特征向量及其相似對角矩陣??荚囈?理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質,掌握求矩陣特征值和特征向量的方法。2了解矩陣相似的概念和相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣。3了解實對稱矩陣的特征值和特征向量的性質。概率論與數理統(tǒng)計部分(一)隨機事件和概率考試內容隨機事件與樣本空間,事件的關系與運算,概率的基本性質,古典型概率

12、,條件概率,概率的基本公式,事件的獨立性,獨立重復試驗??荚囈?了解樣本空間的概念,理解隨機事件的概念,掌握事件的關系及運算。2理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率,掌握概率的加5 / 6 法公式、減法公式、乘法公式、全概率公式以及貝葉斯(bayes)公式。3理解事件獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法。(二)隨機變量及其分布考試內容隨機變量,隨機變量分布函數的概念及其性質,離散型隨機變量的概率分布,連續(xù)型隨機變量的概率密度,常見隨機變量的分布,隨機變量函數的分布??荚囈?理解隨機變量的概念,理解分布函數(

13、 ),()f xp xxx的概念及性質,會計算與隨機變量相了解的事件的概率。2理解離散型隨機變量及其概率分布的概念,掌握01 分布、二項分布( ,)b n p、泊松(poisson)分布( )p及其應用。3 理解連續(xù)型隨機變量及其概率密度的概念,掌握均勻分布( , )u a b、正態(tài)分布2( ,)n、指數分布及其應用,其中參數為(0)的指數分布()e的概率密度為,0( )0,0 xexf xx4會求隨機變量簡單函數的分布。(三)二維隨機變量及其分布考試內容二維隨機變量及其分布,二維離散型隨機變量的概率分布和邊緣分布,二維連續(xù)型隨機變量的概率密度和邊緣概率密度,隨機變量的獨立性和不相關性,常用二

14、維隨機變量的分布,兩個隨機變量簡單函數的分布??荚囈?理解二維隨機變量的概念,理解二維隨機變量的分布的概念和性質,理解二維離散型隨機變量的概率分布和邊緣分布,理解二維連續(xù)型隨機變量的概率密度和邊緣密度,會求與二維離散型隨機變量相關事件的概率。2理解隨機變量的獨立性及不相關性的概念,了解隨機變量相互獨立的條件。3了解二維均勻分布,了解二維正態(tài)分布221212(,)n的概率密度,了解其中參數的概率意義。4會求兩個獨立隨機變量和的分布。(四)隨機變量的數字特征考試內容隨機變量的數學期望(均值)、方差、標準差及其性質,隨機變量簡單函數的數學期6 / 6 望,矩、協方差、相關系數及其性質??荚囈?理解隨機變量數字特征(數學期望、方差、標準差、矩、協方差、相關系數)的概念,會運用數字特征的基本性質,并掌握常用分布的數字特征。2會求隨機變量簡單函數的數學期望。(五)大數定律和中心極限定理考試內容切比雪夫( chebyshew)不等式,切比雪夫大數定律,伯努利(bernoulli )大數定律,棣莫弗 拉普拉斯( de moivre-laplace )定理,列維林德伯格( levy-lindberg )定理??荚囈?了解切比雪夫不等式。2了解切比雪夫大數定律和伯努利大數定律。3了解棣莫弗 拉普拉斯定理(二項分布以正態(tài)分布為極限分布)和列維林德伯格定理(獨立同分布隨機變量序列的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論