




全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Feedback linearization based control of a rotational hydraulic drive Control Engineering Practice, Volume 15, Issue 12, December 2007, Pages 1495-1507 Jaho Seo, Ravinder Venugopal and Jean-Pierre Kenn Abstract The technique of feedback linearization is used to design controllers for displacement, velocity and differential pressure control of a rotational hydraulic drive. The controllers, which take into account the square-root nonlinearity in the systems dynamics, are implemented on an experimental test bench and results of performance evaluation tests are presented. The objective of this research is twofold: firstly, to present a unified method for tracking control of displacement, velocity and differential pressure; and secondly, to experimentally address the issue of whether the system can be modeled with sufficient accuracy to effectively cancel out the nonlinearities in a real-world system. Keywords: Nonlinear control; Feedback linearization; Hydraulic actuators; Real-time systems 1. Introduction Electro-hydraulic hydraulic servo-systems (EHSS) are extensively used in several industries for applications ranging from hydraulic stamping and injection molding presses to aerospace flight-control actuators. EHSS serve as very efficient drive systems because they posses a high power/mass ratio, fast response, high stiffness and high load capability. To maximize the advantages of hydraulic systems and to meet increasingly exacting performance specifications in terms of robust tracking with high accuracy and fast response, high performance servo-controllers are required. However, traditional linear controllers (Anderson, 1988 and Merritt, 1967) have performance limitations due to the presence of nonlinear dynamics in EHSS, specifically, a square-root relationship between the differential pressure that drives the flow of the hydraulic fluid, and the flow rate. These limitations have been well documented in the literature; see Ghazy (2001), Sun and Chiu (1999), for example. Several approaches have been proposed to address these limitations, including the use of variable structure control (Ghazy, 2001; Mihajlov, Nikolic, & Antic, 2002), back-stepping (Jovanovic, 2002; Kaddissi et al., 2005 and Kaddissi et al., 2007; Ursu & Popescu, 2002) and feedback linearization (Chiriboga et al., 1995 and Jovanovic, 2002). Variable structure control in its basic form is prone to chattering (Guglielmino & Edge, 2004) since the control algorithm is based on switching; however, several modifications have been proposed to address this problem (Ghazy, 2001, Guglielmino and Edge, 2004 and Mihajlov et al., 2002). Back-stepping is a technique that is based on Lyapunov theory and guarantees asymptotic tracking (Jovanovic, 2002, Kaddissi et al., 2005, Kaddissi et al., 2007 and Ursu and Popescu, 2002), but finding an appropriate candidate Lyapunov function can be challenging. The controllers obtained using this method are typically complicated and tuning control parameters for transient response is non-intuitive. Other Lyapunov based techniques address additional system nonlinearities such as friction, but are also prone to the same drawbacks as those listed for back-stepping (Liu & Alleyne, 1999). Feedback linearization, in which the nonlinear system is transformed into an equivalent linear system by effectively canceling out the nonlinear terms in the closed-loop, provides a way of addressing the nonlinearities in the system while allowing one to use the power of linear control design techniques to address transient response requirements and actuator limitations. The use of feedback linearization for control of EHSS has been described in Chiriboga et al. (1995) and Jovanovic (2002). In Brcker and Lemmen (2001) disturbance rejection for tracking control of a hydraulic flexible robot is considered, using a decoupling technique similar to the feedback linearization approach proposed herein. However, this approach requires measurements of the disturbance forces and their time derivatives, which are unlikely to be readily available in a practical application. In contrast to the above mentioned techniques, which are all full-state feedback based approaches, Sun and Chiu (1999) describe the design of an observer-based algorithm specifically for force control of an EHSS. An adaptive controller which uses an iterative approach to update control parameters and addresses frictional effects with minimal plant and disturbance knowledge is proposed in Tar, Rudas, Szeghegyi, and Kozlowski (2005) based on the model described in Brcker and Lemmen (2001). Most of the literature on the subject shows simulation results; notable exceptions with actual experimental results are Liu and Alleyne (1999), Niksefat and Sepehri (1999), Sugiyama and Uchida (2004), and Sun and Chiu (1999). The focus of this study is on presenting a controller design approach that is comprehensive, that is, one that covers displacement, velocity and differential pressure control, addresses the nonlinearities present in EHSS and considers practical issues such as transient response and real-time implementation. Thus, a significant portion of the paper is dedicated to the experimental aspects of the study. In addition, this paper is intended to serve as a clear guide for the development and implementation of feedback linearization based controllers for EHSS. The paper is organized as follows: Section 2 describes the rotational hydraulic drive that is used as an experimental test bench. In this section, the mathematical model of the system is also reviewed and validated using experimental data. Section 3 describes the design of PID controllers for this system with simulation and experimental results that serve as a baseline for evaluating the performance of the feedback linearization controllers; Section 4 describes the design and implementation of the feedback linearization controllers and finally, concluding remarks are provided in Section 5. 2. Modeling System description The electro-hydraulic system for this study is a rotational hydraulic drive at the LITP (Laboratoire dintgration des technologies de production) of the University of Qubec cole de technologie suprieure (TS). The set-up is generic and allows for simple extension of the results herewith to other electro-hydraulic systems, for example, double-acting cylinders. Referring to the functional diagram in Fig. 1, a DC electric motor drives a pump, which delivers oil at a constant supply pressure from the oil tank to each component of the system. The oil is used for the operation of the hydraulic actuator and is returned through the servo-valve to the oil tank at atmospheric pressure. An accumulator and a relief valve are used to maintain a constant supply pressure from the output of the pump. The electro-hydraulic system includes two Moog Series 73 servo-valves which control the movement of the rotary actuator and the load torque of the system. These servo-valves are operated by voltage signals generated by an Opal-RT real-time digital control system. Fig. 1. Functional diagram of electro-hydraulic system. The actuator and load are both hydraulic motors connected by a common shaft. One servo-valve regulates the flow of hydraulic fluid to the actuator and the other regulates the flow to the load. The actuator operates in a closed-loop while the load operates open-loop, with the load torque being proportional to the command voltage to the load servo-valve. While the actuator and load chosen for this study are rotary drives, the exact same set-up could be used with a linear actuator and load, and thus, they are represented as generic components in Fig. 1. The test set-up includes three sensors, two Noshok Series 200 pressure sensors with a 0 10 V output corresponding to a range of 20.7 MPa (3000 PSI) that measure the pressure in the two chambers of the rotational drive, as well as a tachometer to measure the angular velocity of the drive. In order to reduce the number of sensors used (a common preference for commercial application), angular displacement is obtained by numerically integrating the angular velocity measurement. Fig. 2 shows the layout of the system and the Opal-RT RT-LAB digital control system. Fig. 2. Layout of LITP test bench. The RT-LAB system consists of a real-time target and a host PC. The real-time target runs a dedicated commercial real-time operating system (QNX), reads sensor signals using an analog-to-digital (A/D) conversion board and generates output voltage signals for the servo-valves using a digital-to-analog (D/A) conversion board. The host PC is used to generate code for the target using MATLAB/Simulink and Opal-RTs RT-LAB software and also to monitor the system. Controller parameters can also be adjusted on-the-fly from the host in RT-LAB. 3. Conclusions The goal of this research is to review the nonlinear dynamics of a rotational hydraulic drive, study how these dynamics lead to limitations i
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐廳火災(zāi)爆炸應(yīng)急預(yù)案(3篇)
- 財務(wù)火災(zāi)應(yīng)急預(yù)案演練方案(3篇)
- VB常見錯誤試題及答案解讀
- 行政法學(xué)研究成就與試題答案總結(jié)
- 2025年軟考備考計劃優(yōu)化試題及答案
- 教學(xué)區(qū)火災(zāi)專項應(yīng)急預(yù)案(3篇)
- 火災(zāi)應(yīng)急預(yù)案適用領(lǐng)域(3篇)
- 信息系統(tǒng)實施技術(shù)試題及答案
- 高考數(shù)學(xué)總結(jié)與復(fù)習(xí)試題及答案
- 網(wǎng)絡(luò)管理員職場秘籍試題及答案
- 礦山安全生產(chǎn)責(zé)任制匯編
- DB42T1745-2021橋梁高強度螺栓連接安裝技術(shù)指南
- 房屋外立面改造施工組織設(shè)計方案
- 小學(xué)四年級道德與法治下冊9《生活離不開他們》課件
- 實驗室安全記錄表
- 進出口業(yè)務(wù)內(nèi)部審計制
- 商品房交房驗收項目表格
- 淺析幼兒攻擊性行為產(chǎn)生的原因及對策
- 以“政府績效與公眾信任”為主題撰寫一篇小論文6篇
- 貴州版二年級綜合實踐活動下冊-教學(xué)計劃
- “人人都是班組長”實施方案
評論
0/150
提交評論