版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
導(dǎo)數(shù)綜合大突破練習(xí)題(卡根,極值點(diǎn)偏移,端點(diǎn)效應(yīng),凹凸反轉(zhuǎn),隱零點(diǎn)等所有題型一應(yīng)俱全)第1講導(dǎo)數(shù)的計(jì)算與幾何意義 2第2講函數(shù)圖象 4第3講三次函數(shù) 14第4講導(dǎo)數(shù)與單調(diào)性 15第5講導(dǎo)數(shù)與極最值 16第6講導(dǎo)數(shù)與零點(diǎn) 18第7講導(dǎo)數(shù)中的恒成立與存在性問(wèn)題 21第8講構(gòu)造函數(shù)解不等式 24第9講導(dǎo)數(shù)中的距離問(wèn)題 27第10講導(dǎo)數(shù)解答題之零點(diǎn)問(wèn)題 28第11講導(dǎo)數(shù)解答題之導(dǎo)數(shù)基礎(chǔ)練習(xí)題 31第12講導(dǎo)數(shù)解答題之分離參數(shù)類(lèi) 33第13講導(dǎo)數(shù)解答題之構(gòu)造新函數(shù)類(lèi) 35第14講導(dǎo)數(shù)解答題之導(dǎo)數(shù)中的函數(shù)不等式放縮 37第15講導(dǎo)數(shù)解答題之導(dǎo)數(shù)中的卡根思想 39第16講導(dǎo)數(shù)解答題之先構(gòu)造,再賦值,證明和式或積式不等式 41第17講導(dǎo)數(shù)解答題之極值點(diǎn)偏移問(wèn)題 46第18講導(dǎo)數(shù)解答題之多元變量消元思想 48第19講導(dǎo)數(shù)解答題之凹凸反轉(zhuǎn)問(wèn)題 51第20講導(dǎo)數(shù)解答題之導(dǎo)數(shù)解決含三角函數(shù)式的證明 53第21講導(dǎo)數(shù)解答題之隱零點(diǎn)問(wèn)題 56第22講導(dǎo)數(shù)解答題之端點(diǎn)效應(yīng)問(wèn)題 58第23講導(dǎo)數(shù)解答題之max,min函數(shù)問(wèn)題 62第24講導(dǎo)數(shù)中的恒成立問(wèn)題 64第25講剪刀模型 67第26講含參多變量消元 691第1講導(dǎo)數(shù)的計(jì)算與幾何意義1.若直線ykxb是曲線ylnx2的切線,也是曲線yln(x1)的切線,則b()A.1B.1C.1ln2D.12ln222.已知函數(shù)f(x)x33ax1,若x軸為曲線yf(x)的切線,則a的值為()4A.1B.1C.3D.124423.過(guò)函數(shù)f(x)1x3x2圖象上一個(gè)動(dòng)點(diǎn)作函數(shù)的切線,則切線傾斜角的范圍為()33333A.[0,]B.[0,)[,)C.[,)D.(,]4244244.若函數(shù)f(x)x21與函數(shù)g(x)alnx1的圖象存在公切線,則正實(shí)數(shù)a的取值范圍是()A.(0,e)B.(0,e]C.(0,2e)D.(0,2e]5.已知a,b為正實(shí)數(shù),直線yxa與曲線yln(xb)相切,則a2的取值范圍是()2bA.(0,)B.(0,1)C.(0,1)D.[1,)26.若曲線y1x2與曲線yalnx在它們的公共點(diǎn)P(s,t)處具有公共切線,則實(shí)數(shù)a()2eA.2B.1C.1D.227.已知函數(shù)f(x)是定義在(0,)的可導(dǎo)函數(shù),f(x)為其導(dǎo)函數(shù),當(dāng)x0且x1時(shí),2f(x)xf(x)0,x1若曲線yf(x)在x1處的切線的斜率為3,則f(1)()4A.0B.1C.3D.1858.設(shè)曲線yxn1(nN*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則log2018x1log2018x2log2018x3log2018x2017的值為.xn9.設(shè)曲線yxn1(nN*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為x,令a,則aaa的n2nn122015值為.10.設(shè)函數(shù)f(x)3x2ax(aR).若f(x)在x0處取得極值,求曲線yf(x)在點(diǎn)(1,f(1))處的切ex線方程為.11.函數(shù)f(x)cos2x在點(diǎn)(,1)處的切線方程為.42212.若一直線與曲線ylnx和曲線x2ay(a0)相切于同一點(diǎn)P,則a的值為 .3第2講函數(shù)圖象1.已知函數(shù)f(x)ax3bx2c,其導(dǎo)數(shù)f(x)的圖象如圖所示,則函數(shù)f(x)的極大值是( )A.a(chǎn)bc B.8a4bc C.3a2b D.c2.設(shè)函數(shù)yf(x)可導(dǎo),yf(x)的圖象如圖所示,則導(dǎo)函數(shù)yf(x)可能為( )A.B.C.D.3.函數(shù)ysin2x的部分圖象大致為()1cosxA.4B.C.D.4.若函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是( )A.f(x)xB.f(x)ln|x|x2C.f(x)1ln|x|D.f(x)xln|x|2ln|x|x|x|5.函數(shù)f(x)xln|x|的圖象大致為()x21A. B.5C.xlnx,x021的圖象大致為(6.函數(shù)f(x)xxln(x),x021xA.C.7.函數(shù)f(x)xln|x|的大致圖象是()|x|A.
D.)B.D.B.C.D.8.函數(shù)f(x)(x1)cosx(?x?且x0)的圖象可能為()xA.B.C.D.69.已知f(x)1x2sin(x),f(x)為f(x)的導(dǎo)函數(shù),則f(x)的圖象是()42A. B.C. D.10.下面四圖都是同一坐標(biāo)系中某三次函數(shù)及其導(dǎo)函數(shù)的圖象,其中一定不正確的序號(hào)是( )A.①② B.③④ C.①③ D.①④11.已知R上的可導(dǎo)函數(shù)f(x)的圖象如圖所示,則不等式(x2)f(x)0的解集為( )A.(,2)(1,) B.(,2)(1,2)C.(,1)(2,) D.(1,1)(2,)12.函數(shù)f(x)x3bx2cxd的大致圖象如圖所示,則x12x22等于( )A.8B.10C.16D.28999913.如圖是函數(shù)f(x)x3bx2cxd的大致圖象,則xx()127A.2B.10C.8D.28399914.函數(shù)f(x)axb的圖象如圖所示,則下列結(jié)論成立的是()(xc)2A.a(chǎn)0,b0,c0B.a(chǎn)0,b0,c0C.a(chǎn)0,b0,c0D.a(chǎn)0,b0,c015.函數(shù)f(x)axb的圖象大致如圖所示,則下列結(jié)論正確的是()(xc)2A.a(chǎn)0,b0,c0 B.a(chǎn)0,b0,c0C.a(chǎn)0,b0,c0D.a(chǎn)0,b0,c016.函數(shù)f(x)ax3bx2cxd的圖象如圖所示,則下列結(jié)論成立的是( )8A.a(chǎn)0,b0,c0,d0B.a(chǎn)0,b0,c0,d0C.a(chǎn)0,b0,c0,d0D.a(chǎn)0,b0,c0,d0x22|x|17.函數(shù)y(2xe)在[2,2]的圖象大致為()sinxA.B.9C.D.18.函數(shù)y2x2e|x|在區(qū)間[2,2]上的圖象大致為( )A.B.C.10D.19.函數(shù)y2x22|x|在[2,2]的圖象大致為()A.B.C. D.20.已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是( )A.f(x)ln|x|x2 B.f(x)ln|x||x| C.f(x)2ln|x|x2D.f(x)2ln|x||x|21.已知某函數(shù)的圖象如圖所示,則該函數(shù)的解析式可能是( )11A.f(x)ln|x|1B.f(x)ln|x|1C.f(x)1ln|x|D.f(x)ln|x|1xxx|x|22.函數(shù)f(x)的圖象如圖所示,則它的解析式可能是()A.f(x)x21B.f(x)2x(|x|1)2xC.f(x)|ln|x||D.f(x)xex123.已知函數(shù)f(x)的圖象如圖所示,則該函數(shù)的解析式可能是( )A.f(x)ln|x|B.f(x)exln|x|exC.f(x)ln|x|D.f(x)(x1)ln|x|x24.已知某函數(shù)的圖象如圖所示,則下列解析式中與此圖象最為符合的是( )12A.f(x)2xB.f(x)2|x|C.f(x)1D.f(x)1ln|x|ln|x|x21|x|1|x|25.已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是()A.f(x)e|x|cosxB.f(x)ln|x|cosxC.f(x)e|x|cosxD.f(x)ln|x|cosx26.已知函數(shù)f(x)的局部圖象如圖所示,則f(x)的解析式可以是( )11A.f(x)e|x|sinxB.f(x)e|x|cosx22C.f(x)ln|x|sinD.f(x)ln|x|cosxx2213第3講三次函數(shù)1.已知f(x)x33ax2bxa2在x1時(shí)有極值0,則ab()A.7B.2C.7和2D.以上答案都不對(duì)2.已知函數(shù)f(x)x33x25,g(x)m(x1)(mR),若存在唯一的正整數(shù)x,使得f(x)g(x),則實(shí)000數(shù)m的取值范圍是()A.[0,5]B.[1,5]C.(1,5]D.(0,1)4343433.設(shè)函數(shù)f(x)x33x2ax5a,若存在唯一的正整數(shù)x,使得f(x)0,則a的取值范圍是()00A.(0,1)B.(1,5]C.(1,3]D.(5,3]32343244.已知函數(shù)f(x)x3ax2x1在(,)上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是()A.(,B.[3][3,)3,3]C.(,D.(3)(3,)3,3)5.若函數(shù)f(x)x3ax2x1在區(qū)間(1,3)上有極值點(diǎn),則實(shí)數(shù)a的取值范圍是()322A.(2,5)B.[2,5)C.(2,10)D.[2,10)22336.若f(x)x3ax2bxa27a在x1處取得極大值10,則b的值為()aA.3或1B.3或1C.3D.12222227.如果函數(shù)f(x)1x31ax2(a1)x1在區(qū)間(1,4)上為減函數(shù),在(6,)上為增函數(shù),則實(shí)數(shù)a的取值23范圍是()A.a(chǎn)?5B.5?a?7C.a(chǎn)?7D.a(chǎn)?5或a?78.已知函數(shù)f(x)1x31ax2x在區(qū)間(1,3)上既有極大值又有極小值,則實(shí)數(shù)a的取值范圍是()223A.(2,)B.[2,)C.(2,5)D.(2,10)239.已知函數(shù)f(x)ax31x2x(a?0)在區(qū)間(0,1)上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是()32A.(0,2)B.[0,1)C.(0,)D.(2,)1410.函數(shù)f(x)1x31(m1)x22(m1)x在(0,4)上無(wú)極值,則m.3211.設(shè)函數(shù)f(x)x3(1a)x2ax有兩個(gè)不同的極值點(diǎn)x,x,且對(duì)不等式f(x)f(x)?0恒成立,則實(shí)1212數(shù)a的取值范圍是.x312.若函數(shù)f(x)ax2x1在區(qū)間[1,3]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是.32213.若函數(shù)f(x)1x3x22在區(qū)間(a,a5)上存在最小值,則實(shí)數(shù)a的取值范圍是.311314.已知函數(shù)f(x)x3(a1)x2ax1,aR.若函數(shù)f(x)在區(qū)間(1,1)內(nèi)是減函數(shù),則實(shí)數(shù)a的取32值范圍是.第4講導(dǎo)數(shù)與單調(diào)性1.已知函數(shù)f(x)lnxln(ax)的圖象關(guān)于直線x1對(duì)稱(chēng),則函數(shù)f(x)的單調(diào)遞增區(qū)間為( )A.(0,2)B.[0,1)C.(,1]D.(0,1]2.若函數(shù)f(x)的定義域?yàn)镈內(nèi)的某個(gè)區(qū)間I上是增函數(shù),且F(x)f(x)在I上也是增函數(shù),則稱(chēng)yf(x)x是I上的“完美函數(shù)”,已知g(x)exxlnx1,若函數(shù)g(x)是區(qū)間[m,)上的“完美函數(shù)”,則2正整數(shù)m的最小值為()A.1B.2C.3D.43.設(shè)函數(shù)f(x)e2xax在(0,)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為()A.[1,)B.(1,)C.[2,)D.(2,)4.若函數(shù)f(x)2x2lnx在其定義域內(nèi)的一個(gè)子區(qū)間[k1,k1]內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是()A.[1,2)B.(1,2)C.[1,3)D.(1,3)225.若函數(shù)f(x)lnxax22在區(qū)間(1,2)內(nèi)存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍是()2A.(,2]B.(2,)C.(2,1)D.[1,)886.若函數(shù)f(x)lnx(xb)2(bR)在區(qū)間[1,2]上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)b的取值范圍是()2A.(,3)B.(,9)C.(3,9)D.(3,)2244215lnxlnx2lnx27.設(shè)1x2,則、()、的大小關(guān)系是()xxx2A.(lnx)2lnxlnx2B.lnx(lnx)2lnx2xxx2xxx2C.(lnx)2lnx2lnxD.lnx2(lnx)2lnxxx2xx2xx8.已知函數(shù)yf(x1)的圖象關(guān)于直線x1對(duì)稱(chēng),且當(dāng)x(0,)時(shí),f(x)|lnx|.若af(e),bfx2(2),cf(2),則a,b,c的大小關(guān)系是()3A.bacB.a(chǎn)bcC.a(chǎn)cbD.cba9.下列命題為真命題的個(gè)數(shù)是()22;②ln22ln1ln2ln①e;③;④e.3e2A.1B.2C.3D.410.下列命題為真命題的個(gè)數(shù)是()②ln①ln33ln2;;③21515;④3eln242eA.1B.2C.3D.411.已知函數(shù)f(x)exlnxaex(aR),若f(x)在(0,)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是x?(a0),對(duì)于下列命題:12.已知函數(shù)f(x)e2,x02ax1,x0(1)函數(shù)f(x)的最小值是1;(2)函數(shù)f(x)在R上是單調(diào)函數(shù);(3)若f(x)0在(12,)上恒成立,則a的取值范圍是a1,其中真命題的序號(hào)是 .13.已知函數(shù)f(x)lnx(xa)2(aR)在區(qū)間[1,2]上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍是.23x2ax14.設(shè)函數(shù)f(x)(aR),f(x)在[3,)上為減函數(shù),則a的取值范圍是.ex第5講導(dǎo)數(shù)與極最值1.若函數(shù)f(x)ex(x3)1kx3kx2只有一個(gè)極值點(diǎn),則k的取值范圍為()316A.(,e)B.[0,e]{1e2}C.(,2)D.(0,2]22.已知函數(shù)f(x)exk(11),若x1是函的f(x)的唯一一個(gè)極值點(diǎn),則實(shí)數(shù)k的取值范圍為()x2x2xA.(,e]B.(,1)C.(,1]{0}D.(,1]{0,e}eee3.已知函數(shù)f(x)ex(x24x4)1k(x24x),x2是f(x)的唯一極小值點(diǎn),則實(shí)數(shù)k的取值范圍為(2)A.[e2,)B.[e3,)C.[e2,)D.[e3,)4.已知函數(shù)f(x)x22xalnx有兩個(gè)極值點(diǎn)x,x,且xx,則()1212A.f(x)32ln2B.f(x)12ln21414C.f(x)12ln2D.f(x)32ln214145.已知函數(shù)f(x)x22x1alnx有兩個(gè)極值點(diǎn)x,x,且xx,則()1212A.f(x)12ln2B.f(x)12ln22424C.f(x2)12ln2D.f(x2)12ln2446.已知t為常數(shù),函數(shù)f(x)(x1)2tlnx有兩個(gè)極值點(diǎn)a、b(ab),則()A.f(b)12ln2B.f(b)12ln2C.f(b)12ln2D.f(b)13ln244447.若函數(shù)yaex3x在R上有小于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍是()A.(3,)B.(,3)C.(1,)D.(,1)338.若函數(shù)f(x)exaxb在R上有小于0的極值點(diǎn),則實(shí)數(shù)a的取值范圍是()A.(1,0)B.(0,1)C.(,1)D.(1,)9.已知函數(shù)f(x)xlnxax2有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為()A.(,0)B.(0,)C.(0,1)D.(0,1)210.已知函數(shù)f(x)xlnx1ax2x3a34a2a2(aR)存在兩個(gè)極值點(diǎn).則實(shí)數(shù)a的取值范圍是()2A.(0,)B.(0,1)C.(1,)D.(1,e)eee1711.若函數(shù)f(x)ex(ex4ax)存在兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為( )A.(0,1)B.(0,1)C.(1,)D.(1,)2212.若函數(shù)f(x)ax2(12a)x2lnx(a0)在區(qū)間(1,1)內(nèi)有極大值,則a的取值范圍是()22A.(1,)B.(1,)C.(1,2)D.(2,)e13.已知f(x)ax2(12a)x2lnx(a0)在區(qū)間(3,4)有極小值,則實(shí)數(shù)a的取值范圍是()2A.(41,31)B.(3,4)C.(31,4)D.(41,3)14.已知aR,函數(shù)f(x)3x2(4a2)xa(a2)lnx在(0,1)內(nèi)有極值,則a的取值范圍是()2A.(0,1)B.(2,0)(0,1)C.(2,1)(1,1)D.(2,1)2215.已知函數(shù)f(x),對(duì)a,b,cR,f(a),f(b),f(c)為一個(gè)三角形的三邊長(zhǎng),則稱(chēng)f(x)為“三角形函數(shù)”,已知函數(shù)f(x)mcos2xmsinx3是“三角形函數(shù)”,則實(shí)數(shù)m的取值范圍是()A.(6,12)B.[2,12]C.[0,12]D.(2,2)713131316.已知x0是函數(shù)f(x)(x2a)(x2a2x2a3)的極小值點(diǎn),則實(shí)數(shù)a的取值范圍是.17.已知x1是函數(shù)f(x)(x2)exkx2kx(k0)的極小值點(diǎn),則實(shí)數(shù)k的取值范圍是.218.若函數(shù)f(x)在區(qū)間A上,對(duì)a,b,cA,f(a),f(b),f(c)為一個(gè)三角形的三邊長(zhǎng),則稱(chēng)函數(shù)f(x)為“三角形函數(shù)”.已知函數(shù)f(x)xlnxm在區(qū)間[e12,e]上是“三角形函數(shù)”,則實(shí)數(shù)m的取值范圍為 .第6講導(dǎo)數(shù)與零點(diǎn)1.設(shè)函數(shù)f(x)x22exlnxa(其中e為自然對(duì)數(shù)的底數(shù),若函數(shù)f(x)至少存在一個(gè)零點(diǎn),則實(shí)數(shù)a的x取值范圍是()A.(0,e21]B.(0,e21]C.[e21,)D.(,e21]eeee182.設(shè)函數(shù)f(x)x32ex2mxlnx,記g(x)f(x),若函數(shù)g(x)至少存在一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范x圍是()A.(,e21]B.(0,e21]eeC.(e21,]D.(e21,e21]eee3.已知函數(shù)f(x)mex與函數(shù)g(x)2x2x1的圖象有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)m取值范圍為()2A.[0,1)B.[0,2){18}C.(0,2){18}D.[0,2){18}ee2e2e24.已知函數(shù)f(x)的定義域?yàn)镽,且對(duì)任意xR都滿足f(1x)f(1x),當(dāng)x?1時(shí),f(x)lnx,0x?1.(其ex,x?0中e為自然對(duì)數(shù)的底數(shù)),若函數(shù)g(x)m|x|2與yf(x)的圖象恰有兩個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是()A.m?0或meB.0m?3C.3meD.me225.定義:如果函數(shù)yf(x)在區(qū)間[a,b]上存在x,x(axxb),滿足f(x)f(b)f(a),12121baf(x)f(b)f(a),則稱(chēng)函數(shù)yf(x)在區(qū)間[a,b]上的一個(gè)雙中值函數(shù),已知函數(shù)f(x)x36x2是區(qū)2ba5間[0,t]上的雙中值函數(shù),則實(shí)數(shù)t的取值范圍是()A.(3,6)B.(2,6)C.(2,3)D.(1,6)55555556.定義:如果函數(shù)yf(x)在定義域內(nèi)給定區(qū)間[a,b]上存在(axb),滿足f(x)f(b)f(a),則00ba稱(chēng)函數(shù)yf(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).則下列敘述正確的個(gè)數(shù)是()①yx2是區(qū)間[1,1]上的平均值函數(shù),0是它的均值點(diǎn);②函數(shù)f(x)x24x在區(qū)間[0,9]上是平均值函數(shù),它的均值點(diǎn)是5;③函數(shù)f(x)log2x在區(qū)間[a,b](其中ba0)上都是平均值函數(shù);④若函數(shù)f(x)x2mx1是區(qū)間[1,1]上的平均值函數(shù),則實(shí)數(shù)m的取值范圍是(0,2)A.1B.2C.3D.47.若存在正實(shí)數(shù)m,使得關(guān)于x的方程xa(2x2m4ex)[ln(xm)lnx]0有兩個(gè)不同的根,其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍是( )19A.(,0)B.(0,1)2eC.(,0)(1,)D.(1,)2e2e8.已知函數(shù)u(x)(2e1)xm,(x)ln(xm)lnx若存在m,使得關(guān)于x的方程2au(x)(x)x有解,其中e為自然對(duì)數(shù)的底數(shù)則實(shí)數(shù)a的取值范圍是()A.(,0)(1,)B.(,0)2e1D.(,0)[1C.(0,),)2e2e9.若關(guān)于x的方程xexm0有三個(gè)不相等的實(shí)數(shù)解x,x,x,且x0xx,其中mR,exxex123123e為自然對(duì)數(shù)的底數(shù),則(x11)2(x21)(x31)的值為()e1e2eA.1mB.eC.m1D.110.若關(guān)于x的方程xexm0有三個(gè)不相等的實(shí)數(shù)解x,x,x,且x0xx,其中mR,exxex123123e2.718為自然對(duì)數(shù)的底數(shù),則(x11)2(x21)(x31)的值為()eee3A.eB.1mC.1mD.111.若關(guān)于x的方程|ex1|2m0有三個(gè)不相等的實(shí)數(shù)解x、x、x,(x0xx)其中|ex1|1123123mR,e2.71828,則(|ex11|1)(|ex21|1)(|ex31|1)2的值為()A.eB.4C.m1D.m112.已知函數(shù)f(x)2x,x0若關(guān)于x的方程f(x)1xm恰有三個(gè)不相等的實(shí)數(shù)解,則m的2x22x,x?0取值范圍是()A.[0,3]B.(0,3)C.[0,9]D.(0,9)44161613.已知函數(shù)f(x)(3x1)ex1mx(m?4e),若有且僅有兩個(gè)整數(shù)使得f(x)?0,則實(shí)數(shù)m的取值范圍是()A.(5,2]B.[5,8)C.[1,8)D.[4e,5)e2e3e223e22e14.已知函數(shù)f(x)(3x1)ex1mx,若有且僅有兩個(gè)整數(shù)使得f(x)?0,則實(shí)數(shù)m的取值范圍是 .20第7講導(dǎo)數(shù)中的恒成立與存在性問(wèn)題1.設(shè)函數(shù)f(x)ex(2x1)axa,其中a1,若存在唯一的整數(shù)x使得f(x)0,則a的取值范圍是(00)A.[3,1)B.[3,3)C.[3,3)D.[3,1)2e2e42e42e2.設(shè)函數(shù)f(x)ex(2x1)axa,其中a1,若存在兩個(gè)整數(shù)x,x,使得f(x),f(x)都小于0,則1212a的取值范圍是()A.[5,3)B.[3,3)C.[5,1)D.[3,1)3e22e2e2e3e22e3.設(shè)函數(shù)f(x)(2x1)ex,g(x)a(x1),其中a1,若存在唯一的整數(shù)x使得f(x)g(x),則a的取000值范圍是()A.[3,1)B.[3,1)C.[3,3)D.[3,3)2e2e42e2e44.設(shè)函數(shù)f(x)ex(3x1)axa,其中a1,若有且只有一個(gè)整數(shù)x使得f(x)?0,則a的取值范圍是(00)A.(2,3)B.[2,3)C.(2,1)D.[2,1)e4e4ee5.已知函數(shù)f(x)(x2a)lnx,曲線yf(x)上存在兩個(gè)不同點(diǎn),使得曲線在這兩點(diǎn)處的切線都與y軸垂直,則實(shí)數(shù)a的取值范圍是( )A.(1,0)B.(1,0)C.(1,)D.(1,)e2e26.已知函數(shù)f(x)x(a1),曲線yf(x)上存在兩個(gè)不同點(diǎn),使得曲線在這兩點(diǎn)處的切線都與y軸垂直,ex則實(shí)數(shù)a的取值范圍是()A.(e2,)B.(e2,0)C.(1,)D.(1,0)e2e27.已知f(x)取值范圍是(A.(1,)
alnx1x2(a0),若對(duì)任意兩個(gè)不等的正實(shí)數(shù)x1,x2都有f(x1)f(x2)?2恒成立,則a的2x1x2)B.[1,)C.(0,1]D.(0,1)8.已知f(x)alnx1x2,若對(duì)任意兩個(gè)不等的正實(shí)數(shù)x,x都有f(x1)f(x2)0成立,則實(shí)數(shù)a的取值212x1x2范圍是( )21A.[0,) B.(0,) C.(0,1) D.(0,1]9.已知函數(shù)f(x)a的取值范圍為(A.(,18)
aln(x1)x2,若對(duì)p,q(0,1),且pq,有f(p1)f(q1)2恒成立,則實(shí)數(shù)pq)B.(,18] C.[18,) D.(18,)10.已知函數(shù)f(x)aln(x1)1x2,在區(qū)間(0,1)內(nèi)任取兩個(gè)數(shù)p,q,且pq,不等式f(p1)f(q1)32pq恒成立,則實(shí)數(shù)a的取值范圍是()A.[8,)B.(3,8]C.[15,)D.[8,15]11.設(shè)函數(shù)f(x)ex(x33x3)aexx(x?2),若不等式f(x)?0有解,則實(shí)數(shù)a的最小值為()A.21B.22C.11D.12e2eee12.設(shè)函數(shù)f(x)x(lnx)3(3x1)lnx(3a)x,若不等式f(x)?0有解,則實(shí)數(shù)a的最小值為()A.21B.22C.12e2D.11eee13.設(shè)函數(shù)f(x)ex(x33x26x2)2aexx,若不等式f(x)?0在[2,)上有解,則實(shí)數(shù)a的最小2值為()A.31B.32C.31D.112ee42ee214.已知函數(shù)f(x)lnx(xb)2(bR),若存在x[1,2],使得f(x)xf(x),則實(shí)數(shù)b的取值范圍x2是()A.(,B.(,3)C.(,9)D.(,3)2)4215.已知f(x)xex,g(x)(x1)2a,若存在x,xR,使得f(x)?g(x)成立,則實(shí)數(shù)a的取值范1221圍為()A.[1,)B.[1,)C.(0,e)D.[1,0)eee16.設(shè)過(guò)曲線g(x)ax2cosx上任意一點(diǎn)處的切線為l,總存在過(guò)曲線f(x)exx上一點(diǎn)處的切線l,12使得l1//l2,則實(shí)數(shù)a的取值范圍為()A.[1,)B.[1,]C.(,3]D.(,3)17.設(shè)函數(shù)f(x)x24,g(x)xex,若對(duì)任意x(0,e],不等式g(x)f(x),x?恒成立,則正數(shù)k的x12k1k22取值范圍為()A.(4,1]B.(e,4]C.(0,ee1]D.(0,4]ee1e4eee14(exa)22145實(shí)數(shù)a的值為.1x2x,若對(duì)任意兩個(gè)不等的正實(shí)數(shù)xf(x1)f(x2)19.已知f(x)alnx,x,都有1恒成立,則a的212x2x212取值范圍是.20.(1)設(shè)函數(shù)f(x)ex(2x1)axa,其中a1,若存在唯一的整數(shù)x,使得f(x)0,則a的取值范00圍是.(2)已知f(x)xex,g(x)(x1)2a,若x,xR,使得f(x)?g(x)成立,則實(shí)數(shù)a的取值范圍.122121.當(dāng)x(0,)時(shí),不等式c2x2(cx1)lnxcx?0恒成立,則實(shí)數(shù)c的取值范圍是.22.若關(guān)于x的不等式(ax1)(exaex)?0在(0,)上恒成立,則實(shí)數(shù)a的取值范圍是.23.關(guān)于x的不等式(ax1)(lnxax)?0在(0,)上恒成立,則實(shí)數(shù)a的取值范圍是.24.已知關(guān)于x的不等式ax3x21x?lnx在(0,)上恒成立,則實(shí)數(shù)a的取值范圍是.x,g(x)425.已知函數(shù)f(x)x1alnx(a0),若對(duì)任意x,x(0,1]都有x12|f(x1)f(x2)|?|g(x1)g(x2)|成立,則實(shí)數(shù)a的取值范圍為.1126.若f(x)x1alnx,g(x)ex,a0,且對(duì)任意x,x[3,4](xx),|f(x)f(x)|||g(x)g(x)ex12121212的恒成立,則實(shí)數(shù)a的取值范圍為.27.設(shè)過(guò)曲線f(x)exx3a上任意一點(diǎn)處的切線為l,總存在過(guò)曲線g(x)(x1)a2cosx上一點(diǎn)處的1切線l2,使得l1l2,則實(shí)數(shù)a的取值范圍為.f(x)g(x)28.設(shè)函數(shù)f(x)e2x21,g(x)e2x、x(0,),不等式,恒成立,則正數(shù)k的,對(duì)任意x?xexk1k12取值范圍是.ex29.已知函數(shù)f(x)x1alnx(aR),g(x),當(dāng)a0時(shí),且對(duì)任意的x,x[4,5](xx),x1212|f(x1)f(x2)||g(x1)g(x2)|恒成立,則實(shí)數(shù)a的取值范圍為.23第8講構(gòu)造函數(shù)解不等式1f(x)f(x)(xR)f(1)0x0xf(x)f(x)0f(x)0.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),,當(dāng)時(shí),,則使得成立的x的取值范圍是()A.(,1)(1,0)B.(0,1)(1,)C.(,1)(0,1)D.(1,0)(1,)2f(x)Rf(0)2xRf(x)f(x)1ef(x)e1(.函數(shù)的定義域是,,對(duì)任意,,則不等式xx的解集為)A.{x|x0}B.{x|x0}C.{x|x1,或x1}D.{x|x1,或0x1}3.已知定義在R上的函數(shù)f(x)滿足f(2)1,且f(x)的導(dǎo)函數(shù)f(x)x1,則不等式f(x)1x2x12的解集為()A.{x|2x2}B.{x|x2}C.{x|x2}D.{x|x2或x2}4.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f(x),滿足f(x)f(x),且f(x2)為偶函數(shù),f(4)1,則不等式f(x)ex的解集為( )A.(,0) B.(0,) C.(,e4) D.(e4,)5.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)f(x),滿足f(x)f(x),且f(x2)f(x2),f(4)1,則不等式f(x)ex的解集為()A.(0,)B.(1,)C.(4,)D.(2,)6.若定義在R上的函數(shù)f(x)滿足f(x)f(x)1,f(0)4,則不等式f(x)31(e為自然對(duì)數(shù)的底數(shù))ex的解集為()A.(0,)B.(,0)(3,)C.(,0)(0,)D.(3,)7.已知函數(shù)f(x)對(duì)定義域R內(nèi)的任意x都有f(x)f(4x),且當(dāng)x2時(shí)其導(dǎo)函數(shù)f(x)滿足xf(x)2f(x)若2a4則( )A.f(2a)f(3)f(log2a)B.f(log2a)f(3)f(2a)f(3)f(2a)24C.f(3)f(log2a)f(2a)D.f(log2a)f(2a)f(3)8.已知函數(shù)yf(x)對(duì)于任意的x(,)滿足f(x)cosxf(x)sinx0(其中f(x)是函數(shù)f(x)的導(dǎo)函22數(shù)),則下列不等式不成立的是()A.f()f()B.f()f()223344C.f(0)f()D.f(0)2f()242)39yf(x)x(2f(x)cosxf(x)sinx0f(x)f(x).已知函數(shù)對(duì)于任意的,滿足(其中是函數(shù)的導(dǎo)函數(shù)),則下列不等式成立的是()A.2f()f(0)B.f(0)f()234C.f(1)f(1)D.f(1)f(0)cos110.函數(shù)f(x)的導(dǎo)函數(shù)為f(x),對(duì)xR,都有2f(x)f(x)成立,若f(ln4)2,則不等式f(x)ex2的解是()A.x1B.0x1C.xln4D.0xln411.函數(shù)f(x)的導(dǎo)函數(shù)f(x),對(duì)xR,都有f(x)f(x)成立,若f(2)e2,則不等式f(x)ex的解是()A.(2,)B.(0,1)C.(1,)D.(0,ln2)12.設(shè)f(x)是定義在R上的奇函數(shù),且f(2)0,當(dāng)x0時(shí),有xf(x)f(x)0恒成立,則不等式xf(x)0x2的解集是()A.(2,0)(2,)B.(2,0)(0,2)C.(,2)(0,2)D.(,2)(2,)13.已知一函數(shù)滿足x0時(shí),有g(shù)(x)2x2g(x),則下列結(jié)論一定成立的是()xA.g(2)g(1)?3B.g(2)g(1)?2C.g(2)g(1)4D.g(2)g(1)?4222214.定義在區(qū)間(0,)上的函數(shù)f(x)使不等式2f(x)xf(x)3f(x)恒成立,其中f(x)為f(x)的導(dǎo)數(shù),則( )25A.8f(2)16B.4f(2)8f(1)f(1)C.3f(2)4D.2f(2)3f(1)f(1)15.已知函數(shù)f(x)的定義域?yàn)?,0)(0,),圖象關(guān)于y軸對(duì)稱(chēng),且當(dāng)x0時(shí),f(x)立,設(shè)a1,則4af(a1),2f(2),(a1)f(4a)的大小關(guān)系為()aaa1a1A.4af(a1)2f(2)(a1)f(4a)aaa1a1B.4af(a1)2f(2)(a1)f(4a)aaa1a1C.2f(2)4af(a1)(a1)f(4a)aaa1a1D.2f(2)4af(a1)(a1)f(4a)aaa1a116.已知函數(shù)f(x)的導(dǎo)函數(shù)為f(x),若x(0,),都有xf(x)2f(x)成立,則( )A.2f(3)3f(2) B.2f(1)3f(2) C.4f(3)3f(2)f(2)
f(xx)恒成D.4f(1)17f(x)f(x)f(x)xf(x)2f(x)xx(0,).已知函數(shù)的導(dǎo)函數(shù)為,若對(duì)恒成立,則下列不等式中,一定成立的是()A.f(2)1f(1)f(2)B.f(2)1f(1)f(2)222324C.3f(2)f(1)f(2)1D.f(2)1f(1)3f(2)3228841118.若a(6),b(7),clog7,定義在R上的奇函數(shù)f(x)滿足:對(duì)任意的x,x[0,)且xx528761212都有f(x1)f(x2)0,則f(a),f(b),f(c)的大小順序?yàn)?)x1x2A.f(b)f(a)f(c)B.f(c)f(b)f(a)C.f(c)f(a)f(b)D.f(b)f(c)f(a)19.設(shè)定義在R上的奇函數(shù)f(x)滿足,對(duì)任意x1,x2(0,),且x1x2,都有f(x2)f(x1)1,且f(3)x2x13,則不等式f(x)1的解集為()xA.(3,0)(0,3)B.(,3)(0,3)C.(,3)(3,)D.(3,0)(3,)20.設(shè)函數(shù)f(x)是定義在(,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f(x),且有3f(x)xf(x)0,則不等式26(x2015)3f(x2015)27f(3)0的解集是 .21.設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f(x),xR,有f(x)f(x)x2,在(0,)上f(x)x,若f(4m)f(m)?84m,則實(shí)數(shù)m的取值范圍是 .22.已知定義在R上函數(shù)f(x)滿足f(2)1,且f(x)的導(dǎo)函數(shù)f(x)2,則不等式f(lnx)52lnx的解集為 .23.若定義在R上的函數(shù)f(x)滿足f(x)f(x)1,f(0)4,則不等式ex[f(x)1]3(e為自然對(duì)數(shù)的底數(shù))的解集為 .24.定義在R上的函數(shù)f(x)滿足:f(x)1f(x),f(0)0,f(x)是f(x)的導(dǎo)函數(shù),則不等式exf(x)ex1(其中e為自然對(duì)數(shù)的底數(shù))的解集為 .25.函數(shù)f(x),g(x)(g(x)0)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x0時(shí),f(x)g(x)f(x)g(x),f(3)0,則不等式f(x)0的解集為.g(x)26.設(shè)f(x)是定義在R上的奇函數(shù),且f(1)0,若不等式x1f(x1)x2f(x2)0對(duì)區(qū)間(,0)內(nèi)任意兩個(gè)x1x2不相等的實(shí)數(shù)x1,x2都成立,則不等式xf(2x)0解集是 .第9講導(dǎo)數(shù)中的距離問(wèn)題1.設(shè)點(diǎn)P在曲線y1ex上,點(diǎn)Q在曲線yln(2x)上,則|PQ|最小值為()2A.1ln2B.C.1ln2D.2(1ln2)2(1ln2)2.設(shè)點(diǎn)P在曲線ye2x上,點(diǎn)Q在曲線y1lnx上,則|PQ|的最小值為()2(1ln2)2B.C.2(1ln2)A.2(1ln2)2(1ln2)D.223.設(shè)點(diǎn)P在曲線yx上,點(diǎn)Q在曲線yln(2x)上,則|PQ|的最小值為()1ln2B.(1ln2)C.1ln2A.2D.2(1ln2)22224.設(shè)動(dòng)直線xm與函數(shù)f(x)x3,g(x)lnx的圖象分別交于點(diǎn)M、N,則|MN|的最小值為()A.1(1ln3)B.1ln3C.1(1ln3)D.ln313335.設(shè)動(dòng)直線xm與函數(shù)f(x)ex,g(x)lnx的圖象分別交于點(diǎn)M,N,則|MN|最小值的區(qū)間為()27A.(1,1)B.(1,2)C.(2,5)D.(5,3)2226.已知直線ya分別與函數(shù)yex1和y交于A,B兩點(diǎn),則A,B之間的最短距離是()x1A.3ln2B.5ln2C.3ln2D.5ln222227.若實(shí)數(shù)a,b,c,d滿足|ba24lna||2cd2|0,則(ac)2(bd)2的最小值為()A.3B.4C.5D.6x?8.已知函數(shù)f(x)e1,x0,若mn且f(m)f(n),則nm的最小值為()1x1,x02A.2ln21B.2ln2C.1ln2D.21x1,x03sinx,g(x),若關(guān)于x的方程f(g(x))m0有兩個(gè)不等實(shí)根x1,x2,29.已知函數(shù)f(x)xln(x1),x?0且x1x2,則x2x1的最小值是()A.2B.3ln2C.42ln2D.32ln23x1,x?010.已知函數(shù)f(x),若x1x2且f(x1)f(x2),則x2x1的取值范圍是()2x1,x0eA.(2,ln2]B.(2,ln31]3323C.[ln2,ln31]D.(ln2,ln31)322311.已知點(diǎn)M在曲線y3lnxx2上,點(diǎn)N在直線xy20上,則|MN|的最小值為.12.已知直線yb與函數(shù)f(x)2x3和g(x)axlnx分別交于A,B兩點(diǎn),若AB的最小值為2,則ab .13.若實(shí)數(shù)a,b,c,d滿足2a2lna3c21,則(ac)bd14.若實(shí)數(shù)a、b、c、d滿足a22lna3c41,則(ac)bd15.已知實(shí)數(shù)a,b,c,d滿足a2ea1c1,則(ac)2bd1
(bd)2的最小值為(bd)2的最小值為(bd)2的最小值為
...第10講導(dǎo)數(shù)解答題之零點(diǎn)問(wèn)題1.已知函數(shù)f(x)ln(x1)xaxa,a是常數(shù),且a?1.28(Ⅰ)討論f(x)零點(diǎn)的個(gè)數(shù);(Ⅱ)證明:2ln(11)3,nN.2n13n1n2.已知函數(shù)f(x)ae2x(a2)exx.(1)討論f(x)的單調(diào)性;(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.3.已知函數(shù)f(x)(exe)exax2,aR.(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.4.已知函數(shù)f(x)(x2)exa(x1)2.(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.5.已知函數(shù)f(x)ex[ax2(a2)]x.(1)討論f(x)的單調(diào)性;(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.296.已知函數(shù)f(x)x3ax14,g(x)lnx(i)當(dāng)a為何值時(shí),x軸為曲線yf(x)的切線;(ii)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)h(x)min{f(x),g(x)}(x0),討論h(x)零點(diǎn)的個(gè)數(shù).7.已知函數(shù)f(x)x2a41x(aR),g(x)lnxx.(1)當(dāng)a為何值時(shí),x軸為曲線yf(x)的切線,(2)用max{m,n}表示m,n中的最大值,設(shè)函數(shù)h(x)max{xf(x),xg(x)}(x0),當(dāng)0a3時(shí),討論h(x)零點(diǎn)的個(gè)數(shù).8.已知函數(shù)f(x)x2a41x.(1)當(dāng)a為何值時(shí),x軸為曲線yf(x)的切線;(2)設(shè)函數(shù)g(x)xf(x),討論g(x)在區(qū)間(0,1)上零點(diǎn)的個(gè)數(shù).9.已知函數(shù)f(x)2x21alnx(aR).x(1)討論f(x)的單調(diào)性;(2)設(shè)g(x)exsinx,若h(x)g(x)(f(x)2x)且yh(x)有兩個(gè)零點(diǎn),求a的取值范圍.3010.已知函數(shù)f(x)aexln(x1)lna1.(1)若a1,求函數(shù)f(x)的極值;(2)若函數(shù)f(x)有且僅有兩個(gè)零點(diǎn),求a的取值范圍.第11講導(dǎo)數(shù)解答題之導(dǎo)數(shù)基礎(chǔ)練習(xí)題1.已知函數(shù)f(x)xlnx,g(x)x2ax.(1)求函數(shù)f(x)在區(qū)間[t,t1](t0)上的最小值m(t);(2)令h(x)g(x)f(x),A(x1,h(x1)),B(x2,h(x2))(x1x2)是函數(shù)h(x)圖象上任意兩點(diǎn),且滿足h(x1)h(x2) 1,求實(shí)數(shù)a的取值范圍;x1x2(3)若x(0,1],使f(x)?ag(x)成立,求實(shí)數(shù)a的最大值.x2.已知函數(shù)f(x)xlnx,g(x)x2ax3.(Ⅰ)求f(x)在[t,t2](t0)上的最小值;(Ⅱ)若存在x[1e,e](e是常數(shù),e2.71828)使不等式2f(x)?g(x)成立,求實(shí)數(shù)a的取值范圍;(Ⅲ)證明對(duì)一切x(0,)都有l(wèi)nxe1xex2成立.3.已知函數(shù)f(x)xlnx,g(x)x2ax2(Ⅰ)求函數(shù)f(x)在[t,t2](t0)上的最小值;(Ⅱ)若函數(shù)yf(x)g(x)有兩個(gè)不同的極值點(diǎn)x1,x2(x1x2)且x2x1ln2,求實(shí)數(shù)a的取值范圍.314.已知函數(shù)f(x)lnx,g(x)12x2bx1(b為常數(shù)).(1)函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線與函數(shù)g(x)的圖象相切,求實(shí)數(shù)b的值;(2)若b0,h(x)f(x)g(x),x1、x2[1,2]使得h(x1)h(x2)?M成立,求滿足上述條件的最大整數(shù)M;(3)當(dāng)b?2時(shí),若對(duì)于區(qū)間[1,2]內(nèi)的任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有|f(x1)f(x2)||g(x1)g(x2)|成立,求b的取值范圍.5.設(shè)函數(shù)f(x)ax2alnx,g(x)1xeex,其中aR,e2.718為自然對(duì)數(shù)的底數(shù).(1)討論f(x)的單調(diào)性;(2)證明:當(dāng)x1時(shí),g(x)0 ;(3)確定a的所有可能取值,使得f(x)g(x)在區(qū)間(1,)內(nèi)恒成立.6.已知函數(shù)f(x)xalnx在x1處的切線與直線x2y0垂直.(Ⅰ)求實(shí)數(shù)a的值;(Ⅱ)函數(shù)g(x)f(x)12x2bx,若函數(shù)g(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)b的取值范圍;(Ⅲ)設(shè)x1,x2(x1x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),若b?72,求g(x1)g(x2)的最小值.7.已知函數(shù)f(x)alnxa21x21(1)當(dāng)a1時(shí),求f(x)在區(qū)間[1,e]上的最值2 e(3)當(dāng)1a0時(shí),有f(x)1a2ln(a)恒成立,求a的取值范圍.328.已知函數(shù)f(x)axxlnx的圖象在點(diǎn)xe(e為自然對(duì)數(shù)的底數(shù))處的切線的斜率為3.(Ⅰ)求實(shí)數(shù)a的值;(Ⅱ)若f(x)?kx2對(duì)任意x0成立,求實(shí)數(shù)k的取值范圍;*nmm(Ⅲ)當(dāng)nm1(m,nN)時(shí),證明:.nmn9.已知函數(shù)f(x)xln(xa)的最小值為0,其中a0.設(shè)g(x)lnxm,x(2)對(duì)任意x1x20,g(x1)g(x2)1恒成立,求實(shí)數(shù)m的取值范圍;x1x2(3)討論方程g(x)f(x)ln(x1)在[1,)上根的個(gè)數(shù).10.設(shè)函數(shù)f(x)lnxa(1x).(Ⅰ)討論:f(x)的單調(diào)性;(Ⅱ)當(dāng)f(x)有最大值,且最大值大于2a2時(shí),求a的取值范圍.第12講導(dǎo)數(shù)解答題之分離參數(shù)類(lèi)1.已知函數(shù)f(x)lnx12ax22x(a0).(1)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;(2)若a12,且關(guān)于x的方程f(x)12xb在[1,4]上恰有兩個(gè)不等的實(shí)根,求實(shí)數(shù)b的取值范圍.332.已知函數(shù)f(x)exa(xlnx).(e為自然對(duì)數(shù)的底數(shù))x(Ⅰ)當(dāng)a0時(shí),試求f(x)的單調(diào)區(qū)間;(Ⅱ)若函數(shù)f(x)在x(12,2)上有三個(gè)不同的極值點(diǎn),求實(shí)數(shù)a的取值范圍.3.已知函數(shù)f(x)exaxa,g(x)2xex.(Ⅰ)討論函數(shù)yf(x)的單調(diào)性;(Ⅱ)若不等式f(x)g(x)有唯一正整數(shù)解,求實(shí)數(shù)a的取值范圍.4.已知函數(shù)f(x)(x2axa)ex.(1)討論f(x)的單調(diào)性;(2)若a(0,2),對(duì)于任意x1,x2[4,0],都有|f(x1)f(x2)|4e2mea恒成立,求m的取值范圍.5.已知函數(shù)f(x)xaexb,其中a,bR.(1)討論函數(shù)f(x)的單調(diào)性;(2)設(shè)a1,kR,若存在b[0,2],對(duì)于任意的實(shí)數(shù)x[0,1],恒有f(x)?kexxex1成立,求k的最大值;.346.已知函數(shù)f(x)lnxxa1.若存在x(0,)使得f(x)?0成立,求實(shí)數(shù)a的取值范圍.7.已知函數(shù)f(x)x2(a2)xalnx,aR(I)若a2,求曲線yf(x)在x1處的切線方程;(II)討論函數(shù)f(x)在[1,e]上的單調(diào)性;(III)若存在x[1,e],使得f(x)?0成立,求實(shí)數(shù)a的取值范圍.第13講導(dǎo)數(shù)解答題之構(gòu)造新函數(shù)類(lèi)1.已知函數(shù)f(x)mxlnxm,g(x)ex,其中m,均為實(shí)數(shù).ex(1)求g(x)的極值;(2)設(shè)m1,0,若對(duì)任意的x,x[3,4](xx),|f(x)f(x)||11|恒成立,求121221g(x2)g(x1)a的最小值;(3)設(shè)2,若對(duì)任意給定的x0(0,e],在區(qū)間(0,e]上總存在t1、t2(t1t2),使得f(t1)f(t2)g(x0)成立,求m的取值范圍.2.已知f(x)e2xln(xa).(1)當(dāng)a1時(shí),①求f(x)的圖象在點(diǎn)(0,1)處的切線方程;②當(dāng)x?0時(shí),求證:f(x)?(x1)2x.(2)若存在x0[0,),使得f(x0)2ln(x0a)x02成立,求實(shí)數(shù)a的取值范圍.353.已知函數(shù)f(x)2x1alnx(aR).x(Ⅱ)設(shè)g(x)f(x)x2alnx,且g(x)有兩個(gè)極值點(diǎn)x1,x2,其中x1x2,若g(x1)g(x2)t恒成立,求t的取值范圍.4.已知函數(shù)f(x)alnx1x2ax(a為常數(shù))有兩個(gè)極值點(diǎn).2(2)設(shè)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2,若不等式f(x1)f(x2)(x1x2)恒成立,求的最小值.5.記max{m,n}表示m,n中的最大值.如max{3,.已知函數(shù)f(x)max{x21,2lnx},10}10g(x)max{xlnx,ax2x}.(1)求函數(shù)f(x)在[1,2]上的值域;2(2)試探討是否存在實(shí)數(shù)a,使得g(x)3x4a對(duì)x(1,)恒成立?若存在,求a的取值范圍;若2不存在,說(shuō)明理由.6.已知函數(shù)f(x)12x2,g(x)alnx.(1)若曲線yf(x)g(x)在x1處的切線的方程為6x2y50,求實(shí)數(shù)a的值;(2)設(shè)h(x)f(x)g(x),若對(duì)任意兩個(gè)不等的正數(shù)x1,x2,都有h(x1)h(x2)2恒成立,求實(shí)數(shù)a的取x1x2值范圍.367.已知函數(shù)f(x)lnxx2x.(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;(Ⅱ)證明當(dāng)a?2時(shí),關(guān)于x的不等式f(x)(a1)x2ax1恒成立;2x?1(Ⅲ)若正實(shí)數(shù)x,x滿足f(x)f(x)2(x2x2)xx0,證明x5.121212121228.設(shè)aZ,已知定義在R上的函數(shù)f(x)2x43x33x26xa在區(qū)間(1,2)內(nèi)有一個(gè)零點(diǎn)x0,g(x)為f(x)的導(dǎo)函數(shù).(Ⅰ)求g(x)的單調(diào)區(qū)間;(Ⅱ)設(shè)m[1,x0)(x0,2],函數(shù)h(x)g(x)(mx0)f(m),求證:h(m)h(x0)0;(Ⅲ)求證:存在大于0的常數(shù)A,使得對(duì)于任意的正整數(shù)p,q,且qp[1,x0)(x0,2],滿足|qpx0|?Aq14.第14講導(dǎo)數(shù)解答題之導(dǎo)數(shù)中的函數(shù)不等式放縮1.已知f(x)ex1a(x1)(x?1),g(x)(x1)lnx,其中e為自然對(duì)數(shù)的底數(shù).(1)若f(x)?0恒成立,求實(shí)數(shù)a的取值范圍;(2)若在(1)的條件下,當(dāng)a取最大值時(shí),求證:f(x)?g(x).2.已知函數(shù)f(x)exax2,g(x)xlnxx2(e1)x1,且曲線yf(x)在x1處的切線方程為ybx1.(1)求a,b的值;(2)求函數(shù)f(x)在[0,1]上的最小值:(3)證明:當(dāng)x0時(shí),g(x)?f(x).373.已知函數(shù)f(x)4ex1ax2,曲線yf(x)在x1處的切線方程為ybx1.(1)求實(shí)數(shù)a、b的值;(2)x0且x1時(shí),證明:曲線yf(x)的圖象恒在切線ybx1的上方;(3)證明不等式:4xex1x23x2lnx?0.4.已知f(x)exax2,曲線yf(x)在(1,f(1))處的切線方程為ybx1.(1)求a,b的值;(2)求f(x)在[0,1]上的最大值;(3)證明:當(dāng)x0時(shí),ex(1e)xxlnx1?0.5.設(shè)函數(shù)f(x)1x2ax2lnx,aR,已知f(x)在x1處有極值.2(2)當(dāng)x[1e,e](其中e是自然對(duì)數(shù)的底數(shù))時(shí),證明:e(ex)(ex6)4?x4;(3)證明:對(duì)任意的n1,nN*,不等式ln2n1n35n231n恒成立.n! 12 8 2438第15講導(dǎo)數(shù)解答題之導(dǎo)數(shù)中的卡根思想1.已知函數(shù)f(x)lnx12ax2,aR(I)求函數(shù)f(x)的單調(diào)區(qū)間,(Ⅱ)若關(guān)于x的不等式f(x)?(a1)x1恒成立,求整數(shù)a的最小值.2.已知函數(shù)f(x)x2x,g(x)lnx.(Ⅰ)求函數(shù)yxg(x)的單調(diào)區(qū)間;(Ⅱ)若t[1,1],求yf[xg(x)t]在x[1,e]上的最小值(結(jié)果用t表示);2a 3(Ⅲ)關(guān)于x的不等式g(x)2f(x)?(2a1)x1恒成立,求整數(shù)a的最小值.3.已知函數(shù)f(x)lnxax2bx,曲線f(x)在(1,f(1))處的切線方程為y2x1.(1)求實(shí)數(shù)a,b的值;k(2)如果不等式f(x)ln(x1)1恒成立,求整數(shù)k的最大值.4.已知函數(shù)f(x)ax2bxxlnx在(1,f(1))處的切線方程為3xy20.(Ⅰ)求實(shí)數(shù)a、b的值;(Ⅱ)設(shè)g(x)x2x,若kZ,且k(x2)f(x)g(x)對(duì)任意的x2恒成立,求k的最大值.395.已知函數(shù)f(x)lnx,h(x)ax(aR).(Ⅰ)函數(shù)f(x)與h(x)的圖象無(wú)公共點(diǎn),試求實(shí)數(shù)a 的取值范圍;(Ⅱ)是否存在實(shí)數(shù)m,使得對(duì)任意的x(12,),都有函數(shù)yf(x)mx的圖象在g(下方?若存在,請(qǐng)求出最大整數(shù)m的值;若不存在,請(qǐng)說(shuō)理由.(參考數(shù)據(jù):ln20.6931,ln31.0986,e1.6487,[3]e1.3956).6.已知函數(shù)f(x)lnx(1a)x3bx,g(x)xexb(a,bR,e為自然對(duì)數(shù)的底數(shù)),且(e))處的切線方程為y(11)xe(Ⅱ)求證:f(x)?g(x)7.已知函數(shù)f(x)lnx(1a)x3bx,g(x)xexb(a,bR,e為自然對(duì)數(shù)的底數(shù)),且(e))處的切線方程為y(11)xe(2)求證:f(x)?g(x)
x)ex的圖象的x(x)在點(diǎn)(e,f(x)在點(diǎn)(e,f408.已知函數(shù)f(x)lnx,h(x)ax(aR).(1)函數(shù)f(x)的圖象與h(x)的圖象無(wú)公共點(diǎn),求實(shí)數(shù)a
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年礦業(yè)公司礦長(zhǎng)聘用合同樣本版B版
- 2023-2024年初級(jí)管理會(huì)計(jì)之專(zhuān)業(yè)知識(shí)綜合卷模擬考試B卷(含答案)
- 2024熱處理技術(shù)培訓(xùn)與咨詢服務(wù)合同3篇
- 2024年連鎖酒店酒水配送合同
- 2024年物流合作臨時(shí)協(xié)議樣本版B版
- 2024年設(shè)計(jì)院工程咨詢服務(wù)合同
- 2024年適用兒童看護(hù)協(xié)議詳細(xì)樣本版B版
- 2024年貨車(chē)駕駛員保險(xiǎn)福利合同
- 2025年度污水處理廠污泥處置及綜合利用合同
- 2025年度高速公路服務(wù)區(qū)停車(chē)業(yè)務(wù)投資建設(shè)承包合同3篇
- 股權(quán)招募計(jì)劃書(shū)
- 創(chuàng)業(yè)之星學(xué)創(chuàng)杯經(jīng)營(yíng)決策常見(jiàn)問(wèn)題匯總
- 公豬站工作總結(jié)匯報(bào)
- 醫(yī)學(xué)專(zhuān)業(yè)醫(yī)學(xué)統(tǒng)計(jì)學(xué)試題(答案見(jiàn)標(biāo)注) (三)
- cnas實(shí)驗(yàn)室規(guī)劃方案
- 新教材蘇教版三年級(jí)上冊(cè)科學(xué)全冊(cè)單元測(cè)試卷
- 膠囊內(nèi)鏡定位導(dǎo)航技術(shù)研究
- 溫病護(hù)理查房
- 職工心理健康知識(shí)手冊(cè)
- 11396-國(guó)家開(kāi)放大學(xué)2023年春期末統(tǒng)一考試《藥事管理與法規(guī)(本)》答案
- 天津市四校2022-2023學(xué)年高二上學(xué)期期末聯(lián)考數(shù)學(xué)試題(原卷版)
評(píng)論
0/150
提交評(píng)論