![遼寧省本溪一中2025屆高考沖刺數學模擬試題含解析_第1頁](http://file4.renrendoc.com/view6/M01/1B/13/wKhkGWd25k6ARzJmAAIP1fGfVaY616.jpg)
![遼寧省本溪一中2025屆高考沖刺數學模擬試題含解析_第2頁](http://file4.renrendoc.com/view6/M01/1B/13/wKhkGWd25k6ARzJmAAIP1fGfVaY6162.jpg)
![遼寧省本溪一中2025屆高考沖刺數學模擬試題含解析_第3頁](http://file4.renrendoc.com/view6/M01/1B/13/wKhkGWd25k6ARzJmAAIP1fGfVaY6163.jpg)
![遼寧省本溪一中2025屆高考沖刺數學模擬試題含解析_第4頁](http://file4.renrendoc.com/view6/M01/1B/13/wKhkGWd25k6ARzJmAAIP1fGfVaY6164.jpg)
![遼寧省本溪一中2025屆高考沖刺數學模擬試題含解析_第5頁](http://file4.renrendoc.com/view6/M01/1B/13/wKhkGWd25k6ARzJmAAIP1fGfVaY6165.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省本溪一中2025屆高考沖刺數學模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若實數x,y滿足條件,目標函數,則z的最大值為()A. B.1 C.2 D.02.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或13.某中學2019年的高考考生人數是2016年高考考生人數的1.2倍,為了更好地對比該??忌纳龑W情況,統(tǒng)計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結論正確的是().A.與2016年相比,2019年不上線的人數有所增加B.與2016年相比,2019年一本達線人數減少C.與2016年相比,2019年二本達線人數增加了0.3倍D.2016年與2019年藝體達線人數相同4.設不等式組表示的平面區(qū)域為,若從圓:的內部隨機選取一點,則取自的概率為()A. B. C. D.5.已知函數,存在實數,使得,則的最大值為()A. B. C. D.6.已知等差數列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內角為,則的最大值為()A.5 B.11 C.20 D.257.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調遞增,則的取值范圍為.其中,判斷正確的個數為()A.1 B.2 C.3 D.48.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.中國古代中的“禮、樂、射、御、書、數”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數”,數學.某校國學社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.24010.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數組成的—個階方陣,其各行各列及兩條對角線所含的個數之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.4511.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.312.如圖所示,三國時代數學家在《周脾算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,?。瑒t落在小正方形(陰影)內的米粒數大約為()A.20 B.27 C.54 D.64二、填空題:本題共4小題,每小題5分,共20分。13.現有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是________.14.已知函數,曲線與直線相交,若存在相鄰兩個交點間的距離為,則可取到的最大值為__________.15.一個四面體的頂點在空間直角坐標系中的坐標分別是,,,,則該四面體的外接球的體積為__________.16.若滿足約束條件,則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了拓展城市的旅游業(yè),實現不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達公路,中間設有至少8個的偶數個十字路口,記為,現規(guī)劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數據如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關性;(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數學期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)已知數列是各項均為正數的等比數列,數列為等差數列,且,,.(1)求數列與的通項公式;(2)求數列的前項和;(3)設為數列的前項和,若對于任意,有,求實數的值.19.(12分)己知的內角的對邊分別為.設(1)求的值;(2)若,且,求的值.20.(12分)設為實數,已知函數,.(1)當時,求函數的單調區(qū)間:(2)設為實數,若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(,)有兩個相異的零點,求的取值范圍.21.(12分)在平面直角坐標系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標準方程;(2)設直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.22.(10分)已知函數.(1)討論函數單調性;(2)當時,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
畫出可行域和目標函數,根據平移得到最大值.【詳解】若實數x,y滿足條件,目標函數如圖:當時函數取最大值為故答案選C【點睛】求線性目標函數的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最?。划敃r,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.2、D【解析】
求得直線的斜率,利用曲線的導數,求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據切線方程求參數,屬于基礎題.3、A【解析】
設2016年高考總人數為x,則2019年高考人數為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總人數為x,則2019年高考人數為,2016年高考不上線人數為,2019年不上線人數為,故A正確;2016年高考一本人數,2019年高考一本人數,故B錯誤;2019年二本達線人數,2016年二本達線人數,增加了倍,故C錯誤;2016年藝體達線人數,2019年藝體達線人數,故D錯誤.故選:A.【點睛】本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.4、B【解析】
畫出不等式組表示的可行域,求得陰影部分扇形對應的圓心角,根據幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎題.5、A【解析】
畫出分段函數圖像,可得,由于,構造函數,利用導數研究單調性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點睛】本題考查了導數在函數性質探究中的應用,考查了學生數形結合,轉化劃歸,綜合分析,數學運算的能力,屬于較難題.6、D【解析】
由公差d=-2可知數列單調遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數列的公差為-2,可知數列單調遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.7、B【解析】
對函數化簡可得,進而結合三角函數的最值、周期性、單調性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數的圖象向右平移個單位長度后得到的函數為,其圖象關于軸對稱,則,解得,故對任意整數,,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數的恒等變換,考查三角函數的平移變換、最值、周期性、單調性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.8、A【解析】
利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質,充分條件,必要條件的定義和判斷方法,屬于基礎題.9、A【解析】
利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【詳解】解:根據題意,首先不做任何考慮直接全排列則有(種),當“樂”排在第一節(jié)有(種),當“射”和“御”兩門課程相鄰時有(種),當“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【點睛】本題考查排列、組合的應用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.10、B【解析】
計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數列前項和公式,屬于基礎題.11、D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.12、B【解析】
設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數大約為,利用概率模擬列方程即可求解?!驹斀狻吭O大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意容積,求導研究單調性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內唯一的極大值點也是最大值點,此時.故答案為:【點睛】本題考查了導數在實際問題中的應用,考查了學生數學建模,轉化劃歸,數學運算的能力,屬于中檔題.14、4【解析】
由于曲線與直線相交,存在相鄰兩個交點間的距離為,所以函數的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點睛】此題考查正弦函數的圖像和性質的應用及三角方程的求解,熟練應用三角函數的圖像和性質是解題的關鍵,考查了推理能力和計算能力,屬于中檔題.15、【解析】
將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補體法,由空間點坐標可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎題.16、4【解析】
作出可行域如圖所示:由,解得.目標函數,即為,平移斜率為-1的直線,經過點時,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)沒有(2)分布列見解析,(3)證明見解析【解析】
(1)根據公式計算卡方值,再對應卡值表判斷..(2)根據題意,隨機變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據期望公式求值.(3)因為至少8個的偶數個十字路口,所以,即.要證,即證,根據組合數公式,即證;易知有.成立.設個路口中有個路口種植楊樹,下面分類討論①當時,由論證.②當時,由論證.③當時,,設,再論證當時,取得最小值即可.【詳解】(1)本次實驗中,,故沒有99.9%的把握認為喜歡樹木的種類與居民所在的城市具有相關性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對任意,有.證明:因為,所以.設個路口中有個路口種植楊樹,①當時,,因為,所以,于是.②當時,,同上可得③當時,,設,當時,,顯然,當即時,,當即時,,即;,因此,即.綜上,,即.【點睛】本題考查獨立性檢驗、離散型隨機變量的分布列以及期望、排列組合,還考查運算求解能力以及必然與或然思想,屬于難題.18、(1),(2)(3)【解析】
(1)假設公差,公比,根據等差數列和等比數列的通項公式,化簡式子,可得,,然后利用公式法,可得結果.(2)根據(1)的結論,利用錯位相減法求和,可得結果.(3)計算出,代值計算并化簡,可得結果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即【點睛】本題主要考查等差數列和等比數列的綜合應用,以及利用錯位相減法求和,屬基礎題.19、(1)(2)【解析】
(1)由正弦定理將,轉化,即,由余弦定理求得,再由平方關系得再求解.(2)由,得,結合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉化思想,屬于中檔題.20、(1)函數單調減區(qū)間為;單調增區(qū)間為.(2)(3)【解析】
(1)據導數和函數單調性的關系即可求出;(2)分離參數,可得對任意的及任意的恒成立,構造函數,利用導數求出函數的最值即可求出的范圍;(3)先求導,再分類討論,根據導數和函數單調性以及最值得關系即可求出的范圍【詳解】解:(1)當時,因為,當時,;當時,.所以函數單調減區(qū)間為;單調增區(qū)間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設,,則,所以函數在上單調遞減,在上單調遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數在上單調遞增,所以函數至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當時,,所以,所以,所以當時,函數的值域為.所以,存在,使得,即,①且當時,,所以函數在上單調遞增,在上單調遞減.因為函數有兩個零點,,所以.②設,,則,所以函數在單調遞增,由于,所以當時,.所以,②式中的,又由①式,得.由第(1)小題可知,當時,函數在上單調遞減,所以,即.當時,(?。┯捎?所以得,又因為,且函數在上單調遞減,函數的圖象在上不間斷,所以函數在上恰有一個零點;(ⅱ)由于,令,設,,由于時,,,所以設,即.由①式,得,當時,,且,同理可得函數在上也恰有一個零點.綜上,.【點睛】本題考查含參數的導數的單調性,利用導數求不等式恒成立問題,以及考查函數零點問題,考查學生的計算能力,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年遼陽大車貨運資格證考試題
- 小學二年級數學上冊口算筆算應用題天天練
- 2025年雞西貨運駕駛員從業(yè)資格證考試題庫答案
- 電鍍加工打樣費合同(2篇)
- 2024-2025學年五年級語文上冊第二單元9西風胡楊教案設計語文S版
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院中國醫(yī)師節(jié)活動總結
- 八年級第一學期體育教學計劃
- 少先隊工作計劃第一學期
- 年度衛(wèi)生工作計劃范文
- 加工制造機械租賃合同
- 過松源晨炊漆公店(其五)課件
- 最新交管12123學法減分題庫含答案(通用版)
- 安全事故案例圖片(76張)課件
- 預應力錨索施工方案
- 豇豆生產技術規(guī)程
- MES運行管理辦法
- 奢侈品管理概論完整版教學課件全書電子講義(最新)
- 文藝美學課件
- 中藥炮制學教材
- 常見腫瘤AJCC分期手冊第八版(中文版)
- 電氣第一種第二種工作票講解pptx課件
評論
0/150
提交評論