版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁北京理工大學
《深度學習基礎》2021-2022學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、想象一個語音識別的系統(tǒng)開發(fā),需要將輸入的語音轉(zhuǎn)換為文字。語音數(shù)據(jù)具有連續(xù)性、變異性和噪聲等特點。以下哪種模型架構(gòu)和訓練方法可能是最有效的?()A.隱馬爾可夫模型(HMM)結(jié)合高斯混合模型(GMM),傳統(tǒng)方法,對短語音處理較好,但對復雜語音的適應性有限B.深度神經(jīng)網(wǎng)絡-隱馬爾可夫模型(DNN-HMM),結(jié)合了DNN的特征學習能力和HMM的時序建模能力,但訓練難度較大C.端到端的卷積神經(jīng)網(wǎng)絡(CNN)語音識別模型,直接從語音到文字,減少中間步驟,但對長語音的處理可能不夠靈活D.基于Transformer架構(gòu)的語音識別模型,利用自注意力機制捕捉長距離依賴,性能優(yōu)秀,但計算資源需求大2、在一個氣候預測的研究中,需要根據(jù)歷史的氣象數(shù)據(jù),包括溫度、濕度、氣壓等,來預測未來一段時間的天氣狀況。數(shù)據(jù)具有季節(jié)性、周期性和長期趨勢等特征。以下哪種預測方法可能是最有效的?()A.簡單的線性時間序列模型,如自回歸移動平均(ARMA)模型,適用于平穩(wěn)數(shù)據(jù),但對復雜模式的捕捉能力有限B.季節(jié)性自回歸整合移動平均(SARIMA)模型,考慮了季節(jié)性因素,但對于非線性和突變的情況處理能力不足C.基于深度學習的長短期記憶網(wǎng)絡(LSTM)與門控循環(huán)單元(GRU),能夠處理長序列和復雜的非線性關系,但需要大量數(shù)據(jù)和計算資源D.結(jié)合多種傳統(tǒng)時間序列模型和機器學習算法的集成方法,綜合各自的優(yōu)勢,但模型復雜度和調(diào)參難度較高3、在一個多分類問題中,如果類別之間存在層次關系,以下哪種分類方法可以考慮這種層次結(jié)構(gòu)?()A.層次分類B.一對一分類C.一對多分類D.以上方法都可以4、考慮一個回歸問題,我們要預測房價。數(shù)據(jù)集包含了房屋的面積、房間數(shù)量、地理位置等特征以及對應的房價。在選擇評估指標來衡量模型的性能時,需要綜合考慮模型的準確性和誤差的性質(zhì)。以下哪個評估指標不僅考慮了預測值與真實值的偏差,還考慮了偏差的平方?()A.平均絕對誤差(MAE)B.均方誤差(MSE)C.決定系數(shù)(R2)D.準確率(Accuracy)5、在進行模型選擇時,除了考慮模型的性能指標,還需要考慮模型的復雜度和可解釋性。假設我們有多個候選模型。以下關于模型選擇的描述,哪一項是不正確的?()A.復雜的模型通常具有更高的擬合能力,但也更容易過擬合B.簡單的模型雖然擬合能力有限,但更容易解釋和理解C.對于一些對可解釋性要求較高的任務,如醫(yī)療診斷,應優(yōu)先選擇復雜的黑盒模型D.在實際應用中,需要根據(jù)具體問題和需求綜合權(quán)衡模型的性能、復雜度和可解釋性6、在一個圖像生成任務中,例如生成逼真的人臉圖像,生成對抗網(wǎng)絡(GAN)是一種常用的方法。GAN由生成器和判別器組成,它們在訓練過程中相互對抗。以下關于GAN訓練過程的描述,哪一項是不正確的?()A.生成器的目標是生成盡可能逼真的圖像,以欺騙判別器B.判別器的目標是準確區(qū)分真實圖像和生成器生成的圖像C.訓練初期,生成器和判別器的性能都比較差,生成的圖像質(zhì)量較低D.隨著訓練的進行,判別器的性能逐漸下降,而生成器的性能不斷提升7、在進行模型選擇時,我們通常會使用交叉驗證來評估不同模型的性能。如果在交叉驗證中,某個模型的性能波動較大,這可能意味著()A.模型不穩(wěn)定,需要進一步調(diào)整B.數(shù)據(jù)存在問題C.交叉驗證的設置不正確D.該模型不適合當前任務8、某機器學習項目需要對大量的圖像進行分類,但是計算資源有限。以下哪種技術可以在不顯著降低性能的前提下減少計算量?()A.模型壓縮B.數(shù)據(jù)量化C.遷移學習D.以上技術都可以考慮9、在一個回歸問題中,如果需要考慮多個輸出變量之間的相關性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務學習模型D.以上模型都可以10、在使用支持向量機(SVM)進行分類時,核函數(shù)的選擇對模型性能有重要影響。假設我們要對非線性可分的數(shù)據(jù)進行分類。以下關于核函數(shù)的描述,哪一項是不準確的?()A.線性核函數(shù)適用于數(shù)據(jù)本身接近線性可分的情況B.多項式核函數(shù)可以擬合復雜的非線性關系,但計算復雜度較高C.高斯核函數(shù)(RBF核)對數(shù)據(jù)的分布不敏感,適用于大多數(shù)情況D.選擇核函數(shù)時,只需要考慮模型的復雜度,不需要考慮數(shù)據(jù)的特點11、在構(gòu)建一個圖像識別模型時,需要對圖像數(shù)據(jù)進行預處理和增強。如果圖像存在光照不均、噪聲和模糊等問題,以下哪種預處理和增強技術組合可能最為有效?()A.直方圖均衡化、中值濾波和銳化B.灰度變換、高斯濾波和圖像翻轉(zhuǎn)C.色彩空間轉(zhuǎn)換、均值濾波和圖像縮放D.對比度拉伸、雙邊濾波和圖像旋轉(zhuǎn)12、考慮一個回歸問題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預測值與真實值之間的MSE較大,這意味著什么()A.模型的預測非常準確B.模型存在過擬合C.模型存在欠擬合D.無法確定模型的性能13、想象一個圖像分類的競賽,要求在有限的計算資源和時間內(nèi)達到最高的準確率。以下哪種優(yōu)化策略可能是最關鍵的?()A.數(shù)據(jù)增強,通過對原始數(shù)據(jù)進行隨機變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時C.模型壓縮,減少模型參數(shù)和計算量,如剪枝和量化,但可能損失一定精度D.集成學習,組合多個模型的預測結(jié)果,提高穩(wěn)定性和準確率,但訓練成本高14、在機器學習中,強化學習是一種通過與環(huán)境交互來學習最優(yōu)策略的方法。假設一個機器人要通過強化學習來學習如何在復雜的環(huán)境中行走。以下關于強化學習的描述,哪一項是不正確的?()A.強化學習中的智能體根據(jù)環(huán)境的反饋(獎勵或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強化學習算法,通過估計狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計算策略的梯度來更新策略參數(shù)D.強化學習不需要對環(huán)境進行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略15、在機器學習中,監(jiān)督學習是一種常見的學習方式。假設我們要使用監(jiān)督學習算法來預測房價,給定了大量的房屋特征(如面積、房間數(shù)量、地理位置等)以及對應的房價數(shù)據(jù)。以下關于監(jiān)督學習在這個任務中的描述,哪一項是不準確的?()A.可以使用線性回歸算法,建立房屋特征與房價之間的線性關系模型B.決策樹算法可以根據(jù)房屋特征的不同取值來劃分決策節(jié)點,最終預測房價C.支持向量機通過尋找一個最優(yōu)的超平面來對房屋數(shù)據(jù)進行分類,從而預測房價D.無監(jiān)督學習算法如K-Means聚類算法可以直接用于房價的預測,無需對數(shù)據(jù)進行標注16、在監(jiān)督學習中,常見的算法有線性回歸、邏輯回歸、支持向量機等。以下關于監(jiān)督學習算法的說法中,錯誤的是:線性回歸用于預測連續(xù)值,邏輯回歸用于分類任務。支持向量機通過尋找一個最優(yōu)的超平面來分類數(shù)據(jù)。那么,下列關于監(jiān)督學習算法的說法錯誤的是()A.線性回歸的模型簡單,容易理解,但對于復雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類和多分類問題,并且可以輸出概率值C.支持向量機在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對于大規(guī)模數(shù)據(jù)集計算成本較高D.監(jiān)督學習算法的性能只取決于模型的復雜度,與數(shù)據(jù)的特征選擇無關17、在一個信用評估模型中,我們需要根據(jù)用戶的個人信息、財務狀況等數(shù)據(jù)來判斷其信用風險。數(shù)據(jù)集存在類別不平衡的問題,即信用良好的用戶數(shù)量遠遠多于信用不良的用戶。為了解決這個問題,以下哪種方法是不合適的?()A.對少數(shù)類樣本進行過采樣,增加其數(shù)量B.對多數(shù)類樣本進行欠采樣,減少其數(shù)量C.為不同類別的樣本設置不同的權(quán)重,在損失函數(shù)中加以考慮D.直接使用原始數(shù)據(jù)集進行訓練,忽略類別不平衡18、假設正在構(gòu)建一個推薦系統(tǒng),需要根據(jù)用戶的歷史行為和偏好為其推薦相關的產(chǎn)品或內(nèi)容。如果數(shù)據(jù)具有稀疏性和冷啟動問題,以下哪種方法可以幫助改善推薦效果?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.混合推薦D.以上方法都可以嘗試19、假設正在開發(fā)一個用于圖像識別的深度學習模型,需要選擇合適的超參數(shù)。以下哪種方法可以用于自動搜索和優(yōu)化超參數(shù)?()A.隨機搜索B.網(wǎng)格搜索C.基于模型的超參數(shù)優(yōu)化D.以上方法都可以20、在一個分類問題中,如果需要對新出現(xiàn)的類別進行快速適應和學習,以下哪種模型具有較好的靈活性?()A.在線學習模型B.增量學習模型C.遷移學習模型D.以上模型都可以21、假設正在進行一個特征選擇任務,需要從大量的特征中選擇最具代表性和區(qū)分性的特征。以下哪種特征選擇方法基于特征與目標變量之間的相關性?()A.過濾式方法B.包裹式方法C.嵌入式方法D.以上方法都可以22、機器學習中的算法選擇需要考慮多個因素。以下關于算法選擇的說法中,錯誤的是:算法選擇需要考慮數(shù)據(jù)的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關于算法選擇的說法錯誤的是()A.對于小樣本數(shù)據(jù)集,優(yōu)先選擇復雜的深度學習算法B.對于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對于實時性要求高的任務,優(yōu)先選擇計算速度快的算法D.對于不平衡數(shù)據(jù)集,優(yōu)先選擇對不平衡數(shù)據(jù)敏感的算法23、某公司希望通過機器學習來預測產(chǎn)品的需求,以便更有效地進行生產(chǎn)計劃和庫存管理。數(shù)據(jù)集涵蓋了歷史銷售數(shù)據(jù)、市場趨勢、季節(jié)因素和經(jīng)濟指標等多方面信息。在這種復雜的多因素預測任務中,以下哪種模型可能表現(xiàn)出色?()A.線性回歸B.多層感知機(MLP)C.循環(huán)神經(jīng)網(wǎng)絡(RNN)D.隨機森林24、某機器學習項目旨在識別手寫數(shù)字圖像。數(shù)據(jù)集包含了各種不同風格和質(zhì)量的手寫數(shù)字。為了提高模型的魯棒性和泛化能力,以下哪種數(shù)據(jù)增強技術可以考慮使用?()A.隨機裁剪B.隨機旋轉(zhuǎn)C.隨機添加噪聲D.以上技術都可以25、在進行機器學習模型的訓練時,過擬合是一個常見的問題。假設我們正在訓練一個決策樹模型來預測客戶是否會購買某種產(chǎn)品,給定了客戶的個人信息和購買歷史等數(shù)據(jù)。以下關于過擬合的描述和解決方法,哪一項是錯誤的?()A.過擬合表現(xiàn)為模型在訓練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳B.增加訓練數(shù)據(jù)的數(shù)量可以有效地減少過擬合的發(fā)生C.對決策樹進行剪枝操作,即刪除一些不重要的分支,可以防止過擬合D.降低模型的復雜度,例如減少決策樹的深度,會導致模型的擬合能力下降,無法解決過擬合問題二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明機器學習中樸素貝葉斯分類器的工作原理。2、(本題5分)機器學習在農(nóng)業(yè)中的應用有哪些方面?3、(本題5分)什么是模型的不確定性估計?為什么它很重要?4、(本題5分)什么是遷移強化學習?它的挑戰(zhàn)是什么?三、應用題(本大題共5個小題,共25分)1、(本題5分)借助基因組學數(shù)據(jù)定位基因和研究基因變異。2、(本題5分)使用Adaboost算法對圖像中的車牌進行識別。3、(本題5分)運用獸醫(yī)領域數(shù)據(jù)診斷動物疾病和制定治療方案。4、(本題5分)運用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財務開票合同范例
- 消防安裝雙方合作合同范例
- 自然合同范例
- 現(xiàn)有賓館整體出租合同范例
- 租水車合同范例
- 廣西租房合同范例
- 設計員合同范例
- 景區(qū)廣告安裝合同范例
- 廠房裝修維護合同范例
- 扶貧項目合作合同范例
- 股權(quán)合作協(xié)議范本三篇
- 2023年四川省眉山市公開招聘警務輔助人員(輔警)筆試專項訓練題試卷(2)含答案
- 《田間試驗》課件
- 【MOOC】概率論與數(shù)理統(tǒng)計-北京理工大學 中國大學慕課MOOC答案
- 人生課件路遙
- 2024年新疆中考化學真題【附答案】
- CFA固定收益證券知到智慧樹期末考試答案題庫2024年秋首都經(jīng)濟貿(mào)易大學
- 高齡心房顫動患者抗凝治療中國專家共識(2024)解讀
- 光伏項目達標投產(chǎn)實施細則-施工
- 《技術經(jīng)濟學》練習題集
- 2023年黑龍江省齊齊哈爾市龍沙區(qū)煙草專賣局公務員考試《行政職業(yè)能力測驗》歷年真題及詳解
評論
0/150
提交評論