遼寧大學(xué)《大數(shù)據(jù)與風險管理》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
遼寧大學(xué)《大數(shù)據(jù)與風險管理》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
遼寧大學(xué)《大數(shù)據(jù)與風險管理》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
遼寧大學(xué)《大數(shù)據(jù)與風險管理》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
遼寧大學(xué)《大數(shù)據(jù)與風險管理》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁遼寧大學(xué)

《大數(shù)據(jù)與風險管理》2022-2023學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在數(shù)據(jù)分析中,模型的過擬合和欠擬合是常見的問題。假設(shè)要訓(xùn)練一個預(yù)測房價的模型,以下關(guān)于防止過擬合和欠擬合的方法描述,正確的是:()A.不進行數(shù)據(jù)劃分和交叉驗證,直接在整個數(shù)據(jù)集上訓(xùn)練模型B.增加模型的復(fù)雜度,不考慮數(shù)據(jù)的特點和規(guī)律C.采用正則化技術(shù)、增加數(shù)據(jù)量、進行特征選擇、使用合適的模型架構(gòu)和超參數(shù)調(diào)整等方法,平衡模型的復(fù)雜度和擬合能力,避免過擬合和欠擬合D.認為模型的性能只取決于數(shù)據(jù),不關(guān)注模型的調(diào)整和優(yōu)化2、在進行數(shù)據(jù)預(yù)處理時,數(shù)據(jù)標準化或歸一化是常見的操作。假設(shè)要對一組包含不同量綱的特征數(shù)據(jù)進行標準化,以下哪種方法可能是最常用的?()A.最小-最大標準化B.Z-score標準化C.小數(shù)定標標準化D.以上方法使用頻率相同3、假設(shè)我們有一組銷售數(shù)據(jù),要分析不同產(chǎn)品類別的銷售額在總銷售額中的占比情況,以下哪種圖表最能直觀地展示結(jié)果?()A.折線圖B.柱狀圖C.餅圖D.箱線圖4、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是必不可少的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的說法中,錯誤的是?()A.數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)集成等多個環(huán)節(jié)B.數(shù)據(jù)預(yù)處理的目的是提高數(shù)據(jù)的質(zhì)量,為后續(xù)分析提供更好的數(shù)據(jù)基礎(chǔ)C.數(shù)據(jù)預(yù)處理可以使用自動化工具和算法,也可以手動進行處理D.數(shù)據(jù)預(yù)處理只需要在數(shù)據(jù)分析的開始階段進行,一旦完成就不需要再進行調(diào)整5、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要分析股票市場數(shù)據(jù),需要從歷史價格、成交量等原始數(shù)據(jù)中構(gòu)建有效的特征。以下哪種特征構(gòu)建方法在股票數(shù)據(jù)分析中可能最為有效?()A.基于時間序列的特征提取B.基于統(tǒng)計的特征構(gòu)建C.基于主成分分析的特征降維D.基于深度學(xué)習的自動特征學(xué)習6、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的目的是為了更好地傳達數(shù)據(jù)的信息。以下關(guān)于數(shù)據(jù)可視化目的的描述中,錯誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和趨勢C.數(shù)據(jù)可視化可以提高數(shù)據(jù)的準確性和可靠性D.數(shù)據(jù)可視化可以增強數(shù)據(jù)的說服力和影響力7、在數(shù)據(jù)分析中,聚類分析用于將數(shù)據(jù)分組。假設(shè)要對客戶進行細分,以下關(guān)于聚類分析的描述,哪一項是不正確的?()A.K-Means聚類算法需要預(yù)先指定聚類的數(shù)量B.層次聚類可以生成層次結(jié)構(gòu)的聚類結(jié)果,便于觀察不同層次的分組情況C.聚類分析的結(jié)果只取決于算法和數(shù)據(jù),不受初始條件和參數(shù)的影響D.可以通過評估聚類的緊密度和分離度來選擇最優(yōu)的聚類方案8、對于一個時間序列數(shù)據(jù),若要預(yù)測未來幾個時間點的值,以下哪種模型較為適用?()A.移動平均模型B.指數(shù)平滑模型C.自回歸模型D.以上都可以9、假設(shè)要分析某電商平臺用戶的購買行為隨時間的變化趨勢,以下哪種可視化方法較為合適?()A.折線圖B.柱狀圖C.餅圖D.箱線圖10、數(shù)據(jù)分析中的推薦系統(tǒng)廣泛應(yīng)用于電商、娛樂等領(lǐng)域。假設(shè)要為一個在線音樂平臺構(gòu)建推薦系統(tǒng),根據(jù)用戶的歷史播放記錄和偏好為其推薦歌曲。以下哪種推薦算法在處理這種音樂推薦場景時更能滿足用戶的個性化需求?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.基于知識的推薦D.混合推薦11、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)要展示一個公司在過去十年中不同產(chǎn)品的銷售額變化趨勢,同時要對比不同地區(qū)的銷售情況。以下哪種數(shù)據(jù)可視化方式最能清晰地呈現(xiàn)這些信息,便于分析和決策?()A.折線圖B.柱狀圖C.餅圖D.箱線圖12、假設(shè)要分析一個電商平臺的用戶評論數(shù)據(jù),以提取用戶的意見和情感傾向。以下哪種自然語言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實體識別D.以上都是13、在數(shù)據(jù)分析的預(yù)測模型選擇中,假設(shè)數(shù)據(jù)具有非線性和復(fù)雜的特征,且樣本數(shù)量有限。以下哪種模型可能在這種情況下表現(xiàn)更出色?()A.決策樹集成模型,如隨機森林B.神經(jīng)網(wǎng)絡(luò),具有強大的擬合能力C.支持向量回歸,處理小樣本D.堅持使用簡單的線性模型14、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量的評估指標有很多,其中準確性是一個重要的指標。以下關(guān)于準確性的描述中,錯誤的是?()A.準確性是指數(shù)據(jù)與實際情況的符合程度B.準確性可以通過計算數(shù)據(jù)的誤差率來衡量C.提高數(shù)據(jù)的準確性可以通過數(shù)據(jù)清洗和驗證等方法來實現(xiàn)D.數(shù)據(jù)的準確性只與數(shù)據(jù)的來源有關(guān),與數(shù)據(jù)分析的方法和工具無關(guān)15、在數(shù)據(jù)倉庫中,星型模型和雪花模型是常見的數(shù)據(jù)模型。以下關(guān)于這兩種模型的比較,錯誤的是?()A.星型模型比雪花模型更易于理解B.雪花模型比星型模型更節(jié)省存儲空間C.星型模型的查詢效率通常高于雪花模型D.雪花模型比星型模型更適合復(fù)雜的業(yè)務(wù)需求16、在數(shù)據(jù)分析的過程中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)你獲取了一份包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯誤數(shù)據(jù)和重復(fù)記錄等問題。以下關(guān)于數(shù)據(jù)清洗方法的選擇,哪一項是最為關(guān)鍵的?()A.直接刪除包含缺失值或錯誤數(shù)據(jù)的記錄,以保持數(shù)據(jù)的簡潔性B.采用均值或中位數(shù)來填充缺失值,不考慮數(shù)據(jù)的分布特征C.通過數(shù)據(jù)驗證和邏輯檢查來修正錯誤數(shù)據(jù),并去除重復(fù)記錄D.忽略數(shù)據(jù)中的問題,直接進行后續(xù)的分析17、在進行數(shù)據(jù)探索性分析時,我們需要對數(shù)據(jù)的分布、相關(guān)性等進行初步了解。假設(shè)我們有一個包含多個變量的數(shù)據(jù)集。以下關(guān)于探索性分析的描述,哪一項是不準確的?()A.繪制直方圖可以觀察數(shù)據(jù)的分布形態(tài),判斷是否符合正態(tài)分布B.計算相關(guān)系數(shù)可以衡量變量之間的線性相關(guān)性C.探索性分析只是對數(shù)據(jù)的初步了解,對后續(xù)的分析沒有實質(zhì)性的幫助D.可以通過數(shù)據(jù)可視化和統(tǒng)計摘要來發(fā)現(xiàn)數(shù)據(jù)中的異常值和潛在模式18、數(shù)據(jù)分析中的模型評估不僅包括在訓(xùn)練集上的表現(xiàn),還需要在測試集上進行驗證。假設(shè)我們在訓(xùn)練一個模型時,發(fā)現(xiàn)訓(xùn)練集上的準確率很高,但測試集上的準確率很低,以下哪種情況可能導(dǎo)致了這種過擬合現(xiàn)象?()A.模型過于復(fù)雜B.訓(xùn)練數(shù)據(jù)量不足C.特征選擇不當D.以上都是19、對于一個存在異常值的數(shù)據(jù)集合,以下哪種描述性統(tǒng)計量對異常值較為敏感?()A.中位數(shù)B.眾數(shù)C.均值D.四分位數(shù)20、在數(shù)據(jù)分析中,以下哪種抽樣方法能夠保證樣本對總體具有較好的代表性,同時又能降低抽樣誤差?()A.簡單隨機抽樣B.分層抽樣C.整群抽樣D.系統(tǒng)抽樣21、數(shù)據(jù)分析中的數(shù)據(jù)隱私保護是一個重要的問題。假設(shè)一家公司要對員工的個人數(shù)據(jù)進行分析,同時需要確保數(shù)據(jù)的使用符合法律和道德規(guī)范。以下哪種措施可能有助于保護員工的隱私?()A.匿名化處理數(shù)據(jù)B.只在公司內(nèi)部網(wǎng)絡(luò)中分析數(shù)據(jù)C.獲得員工的明確同意D.以上措施都有助于保護隱私22、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和知識方面發(fā)揮著重要作用。假設(shè)要從一個電商網(wǎng)站的用戶購買記錄中挖掘潛在的消費模式,以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)經(jīng)常一起購買的商品組合B.分類算法可以預(yù)測新用戶可能感興趣的商品類別C.數(shù)據(jù)挖掘的結(jié)果總是準確無誤的,可以直接用于決策,無需進一步驗證D.聚類分析可以將用戶分為具有相似購買行為的不同群體23、在數(shù)據(jù)分析中,假設(shè)檢驗是常用的方法之一。在進行雙側(cè)檢驗時,如果P值小于0.05,我們可以得出什么結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無法得出結(jié)論D.原假設(shè)可能成立24、在進行數(shù)據(jù)可視化時,顏色的選擇有一定的技巧。以下關(guān)于顏色使用的描述,錯誤的是:()A.避免使用過多的顏色,以免造成視覺混亂B.顏色的亮度和飽和度差異越大,對比越明顯C.可以隨意選擇顏色,只要自己覺得美觀就行D.對于重要的數(shù)據(jù),可以使用醒目的顏色突出顯示25、對于一個不平衡的數(shù)據(jù)集(某一類別的樣本數(shù)量遠多于其他類別),以下哪種處理方法可能會提高模型性能?()A.過采樣B.欠采樣C.生成對抗網(wǎng)絡(luò)D.以上都是二、簡答題(本大題共4個小題,共20分)1、(本題5分)在數(shù)據(jù)分析中,如何評估模型的泛化能力?請說明常見的評估方法和指標,并解釋如何通過交叉驗證等技術(shù)來提高模型的泛化能力。2、(本題5分)簡述數(shù)據(jù)挖掘中的Web挖掘,包括網(wǎng)頁內(nèi)容挖掘、用戶行為挖掘等,說明其在互聯(lián)網(wǎng)領(lǐng)域的應(yīng)用。3、(本題5分)描述在數(shù)據(jù)分析中,如何進行特征的交互作用分析,解釋其重要性和常用方法,并舉例說明在實際問題中的應(yīng)用。4、(本題5分)簡述數(shù)據(jù)挖掘中的生物信息挖掘,包括基因序列分析、蛋白質(zhì)結(jié)構(gòu)預(yù)測等,說明其在生命科學(xué)中的應(yīng)用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)某在線自考學(xué)習平臺保存了學(xué)生學(xué)習進度、考試成績、學(xué)習困難反饋等。優(yōu)化課程內(nèi)容和學(xué)習支持服務(wù)。2、(本題5分)某網(wǎng)約車平臺的拼車服務(wù)存有數(shù)據(jù),包括拼車人數(shù)、行程路線、費用分攤、用戶滿意度等。分析拼車人數(shù)和行程路線對費用分攤和用戶滿意度的影響。3、(本題5分)一家房地產(chǎn)中介公司擁有房屋租賃數(shù)據(jù),包括房屋位置、戶型、面積、租金、租賃周期等。研究不同位置和戶型的房屋租金與租賃周期的關(guān)系。4、(本題5分)某汽車租賃公司掌握了不同車型的租賃需求、租賃時長、用戶偏好等。研究怎樣借助這些數(shù)據(jù)優(yōu)化車輛配置和定價策略。5、(本題5分)某醫(yī)院保存了患者的病歷信息、診斷結(jié)果、治療方案等數(shù)據(jù)。分析疾病的發(fā)病規(guī)律和治療效果,提升醫(yī)療服務(wù)質(zhì)量和資源配置效率。四、論述題(本大題共3個小題,共30分)1、(本題10分)在保險行業(yè),客戶風險評估和理賠管理依賴于數(shù)據(jù)分析。以某保險公司為例,闡述如何通過數(shù)據(jù)分析來確定保險費率、識別欺詐理賠、優(yōu)化理賠流程,以及如何建立有效的風險模型和應(yīng)對數(shù)據(jù)偏

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論