版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆三門峽市重點中學(xué)高二上數(shù)學(xué)期末達標檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點到準線的距離為()A. B.C. D.12.已知在直角坐標系xOy中,點Q(4,0),O為坐標原點,直線l:上存在點P滿足.則實數(shù)m的取值范圍是()A. B.C. D.3.已知橢圓,則它的短軸長為()A.2 B.4C.6 D.84.如圖所示,在三棱錐中,E,F(xiàn)分別是AB,BC的中點,則等于()A. B.C. D.5.我國古代的數(shù)學(xué)名著《九章算術(shù)》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數(shù)是前一天的2倍,5天共織布5尺,請問第二天織布的尺數(shù)是()A. B.C. D.6.等差數(shù)列的前項和,若,則A.8 B.10C.12 D.147.已知橢圓的左、右焦點分別為、,點在橢圓上,若,則的面積為()A. B.C. D.8.如圖,已知正方體,點P是棱中點,設(shè)直線為a,直線為b.對于下列兩個命題:①過點P有且只有一條直線l與a、b都相交;②過點P有且只有兩條直線l與a、b都成角.以下判斷正確的是()A.①為真命題,②為真命題 B.①為真命題,②為假命題C.①為假命題,②為真命題 D.①為假命題,②為假命題9.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或10.已知函數(shù),若對任意兩個不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.11.由直線上的點向圓引切線,則切線長的最小值為()A. B.C.4 D.212.設(shè)函數(shù)若函數(shù)有兩個零點,則實數(shù)m的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列滿足,,,則公差______14.已知函數(shù),若,則________.15.若斜率為的直線與橢圓交于,兩點,且的中點坐標為,則___________.16.在中,,是線段上的點,,若的面積為,當(dāng)取到最大值時,___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點F是拋物線和橢圓的公共焦點,是與的交點,.(1)求橢圓的方程;(2)直線與拋物線相切于點,與橢圓交于,,點關(guān)于軸的對稱點為.求的最大值及相應(yīng)的.18.(12分)已知直線,拋物線.(1)與有公共點,求的取值范圍;(2)是坐標原點,過的焦點且與交于兩點,求的面積.19.(12分)在①,②是與的等比中項,③這三個條件中任選一個,補充在下面的問題中,并解答問題:已知數(shù)列{}的前n項和為,,且滿足___(1)求數(shù)列{}的通項公式;(2)求數(shù)列{}前n項和注:如果選擇多個條件分別解答,按第一個解答計分20.(12分)已知函數(shù).(1)設(shè)函數(shù),討論在區(qū)間上的單調(diào)性;(2)若存在兩個極值點,()(極值點是指函數(shù)取極值時對應(yīng)的自變量的值),且,證明:.21.(12分)已知P,Q的坐標分別為,,直線PM,QM相交于點M,且它們的斜率之積是.設(shè)點M的軌跡為曲線C.(1)求曲線的方程;(2)設(shè)為坐標原點,圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點A,B.當(dāng),且滿足時,求面積的取值范圍.22.(10分)已知等差數(shù)列滿足;正項等比數(shù)列滿足,,(1)求數(shù)列,的通項公式;(2)數(shù)列滿足,的前n項和為,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關(guān)基本量,屬于基礎(chǔ)題.2、A【解析】根據(jù)給定直線設(shè)出點P的坐標,再借助列出關(guān)于的不等式,然后由不等式有解即可計算作答.【詳解】因點P在直線l:上,則設(shè),于是有,而,因此,,即,依題意,上述關(guān)于的一元二次不等式有實數(shù)解,從而有,解得,所以實數(shù)m的取值范圍是.故選:A3、B【解析】根據(jù)橢圓短軸長的定義進行求解即可.【詳解】由橢圓的標準方程可知:,所以該橢圓的短軸長為,故選:B4、D【解析】根據(jù)向量的線性運算公式化簡可得結(jié)果.【詳解】因為E,F(xiàn)分別是AB,AC的中點,所以,,所以,故選:D5、C【解析】根據(jù)等比數(shù)列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數(shù)成等比數(shù)列,設(shè)其首項為,公比為,則,解得所以第二天織布的尺數(shù)為.故選:C6、C【解析】假設(shè)公差為,依題意可得.所以.故選C.考點:等差數(shù)列的性質(zhì).7、B【解析】求出,可知為等腰三角形,取的中點,可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點,因為,則,由勾股定理可得,所以,.故選:B.8、A【解析】①由正方形的性質(zhì),可以延伸正方形,再利用兩條平行線確定一個平面即可;②一組鄰邊與對角面夾角相等,在平面內(nèi)繞P轉(zhuǎn)動,可以得到二條直線與a、b的夾角都等于.【詳解】如下圖所示,在側(cè)面正方形和再延伸一個正方形和,則平面和在同一個平面內(nèi),所以過點P,有且只有一條直線l,即與a、b相交,故①為真命題;取中點N,連PN,由于a、b為異面直線,a、b的夾角等于與b的夾角.由于平面,平面,,所以平面,所以與與b的夾角都為.又因為平面,所以與與b的夾角都為,而,所以過點P,在平面內(nèi)存在一條直線,使得與與b的夾角都為,同理可得,過點P,在平面內(nèi)存在一條直線,使得與與的夾角都為;故②為真命題.故選:A9、D【解析】由光的反射原理知,反射光線的反向延長線必過點,設(shè)反射光線所在直線的斜率為,則反射光線所在直線方程為:,即:.又因為光線與圓相切,所以,,整理:,解得:,或,故選D考點:1、圓的標準方程;2、直線的方程;3、直線與圓的位置關(guān)系.10、A【解析】將已知條件轉(zhuǎn)化為時恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對任意都有恒成立,則時,,當(dāng)時恒成立,
,當(dāng)時恒成立,,故選:A11、D【解析】切點與圓心的連線垂直于切線,切線長轉(zhuǎn)化為直線上點與圓心連線和半徑的關(guān)系,利用點到直線的距離公式求出圓心與直線上點距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設(shè)為直線上任意一點,,切線長的最小值為:,故選:D.12、D【解析】有兩個零點等價于與的圖象有兩個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與最值,畫出函數(shù)圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:設(shè),則,所以在上遞減,在上遞增,,且時,,有兩個零點等價于與的圖象有兩個交點,畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點,此時,函數(shù)有兩個零點,實數(shù)m的取值范圍是,故選:D.【點睛】方法點睛:本題主要考查分段函數(shù)的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,以及數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來,圖象的應(yīng)用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì)二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)等差數(shù)列性質(zhì)求得,再根據(jù)題意列出相關(guān)的方程組,解得答案.【詳解】為等差數(shù)列,故由可得:,即,故,故,所以,解得,故答案為:214、【解析】求出導(dǎo)函數(shù),確定導(dǎo)函數(shù)奇函數(shù),然后可求值【詳解】由已知,它是奇函數(shù),∴故答案為:【點睛】本題考查導(dǎo)數(shù)的運算,考查函數(shù)的奇偶性,確定函數(shù)的奇偶性是解題關(guān)鍵15、-1【解析】根據(jù)給定條件設(shè)出點A,B的坐標,再借助“點差法”即可計算得解.【詳解】依題意,線段的中點在橢圓C內(nèi),設(shè),,由兩式相減得:,而,于是得,即,所以.故答案為:16、【解析】由三角形面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當(dāng)且僅當(dāng)時,取得最大值,,,由余弦定理得,解得.故答案為【點睛】本題考查余弦定理解三角形,同時也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時,需要結(jié)合已知條件得出定值條件,同時要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】(1)根據(jù)題意可得,然后根據(jù),,計算可得,最后可得結(jié)果.(2)假設(shè)直線的方程為,根據(jù)與拋物線相切,可得,然后與橢圓聯(lián)立,計算,然后計算點到的距離,計算,利用函數(shù)性質(zhì)可得結(jié)果.【詳解】(1)由題意知:,.,得:,所以.所以的方程為.(2)設(shè)直線的方程為,則由,得得:所以直線的方程為.由,得得.又,所以點到的距離為..令,則,.此時,即【點睛】本題考查直線與圓錐曲線的綜合以及三角形面積問題,本題著重考查對問題分析能力以及計算能力,屬難題.18、(1);(2).【解析】(1)聯(lián)立直線l與拋物線C的方程消去x,借助判別式建立不等式求解作答.(2)利用(1)中信息求出點縱坐標差的絕對值即可計算作答.【小問1詳解】依題意,由消去x并整理得:,因與有公共點,則,解得:,所以的取值范圍是.【小問2詳解】拋物線的焦點,則,設(shè),由(1)知,,則,因此,,所以的面積.19、(1);(2).【解析】(1)選①,可得數(shù)列為等差數(shù)列,求出,由,可得數(shù)列的通項公式為選②是與的等比中項,可得,由,可得,從而利用累乘法求得數(shù)列的通項公式為選③,由,可得,則數(shù)列為等差數(shù)列,從而求出通項公式(2)由(1)知,求出,利用錯位相減求和法求出小問1詳解】選①.因為,,所以是首項為1,公差為1的等差數(shù)列則,從而當(dāng)時,,經(jīng)檢驗,當(dāng)時,也符合上式.所以選②.因為是與的等比中項所以,當(dāng)時,,兩式相減得,整理得,所以,經(jīng)檢驗,也符合上式,所以選③.由題設(shè),得,兩式相減,得,整理,得,因為.所以,所以是首項為1,公差為2的等差數(shù)列,所以【小問2詳解】由(1)知,,所以,所以,則兩式相減,得,所以20、(1)答案見解析(2)證明見解析【解析】(1)由題意得,然后對其求導(dǎo),再分,兩種情況討論導(dǎo)數(shù)的正負,從而可求出函數(shù)的單調(diào)區(qū)間,(2)由(1)結(jié)合零點存在性定理可得在和上各有一個零點,且是的兩個極值點,再將極值點代入導(dǎo)函數(shù)中化簡結(jié)合已知可得,,從而將要證的結(jié)論轉(zhuǎn)化為證,令,再次轉(zhuǎn)化為利用導(dǎo)數(shù)求的最小值大于零即可【小問1詳解】由,得,則,當(dāng)時,在上單調(diào)遞增;當(dāng)時,令.當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.綜上,當(dāng)時,的增區(qū)間為,無減區(qū)間當(dāng)時,的增區(qū)間為,減區(qū)間為小問2詳解】由(1)知若存在兩個極值點,則,且,且注意到,所以在和上各有一個零點,且時,單調(diào)遞減;當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.所以是的兩個極值點.,因為,所以,所以,所以,即,所以而,所以,所以,要證,即要證即要證:因為,所以所以,即要證:即要證:令,即要證:即要證:令當(dāng)時,,所以在上單調(diào)增所以結(jié)論得證.【點睛】關(guān)鍵點點睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵是將兩個極值點代入導(dǎo)函數(shù)中化簡后,將問題轉(zhuǎn)化為證明成立,換元后構(gòu)造函數(shù),再利用導(dǎo)數(shù)證明,考查數(shù)學(xué)轉(zhuǎn)化思想和計算能力,屬于較難題21、(1)(2)【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024學(xué)年泰安市高三語文(上)12月考試卷附答案解析
- 《電工電子技術(shù) 》課件-第10章 邏輯代數(shù)基礎(chǔ)與組合邏輯電路
- 2025年白城貨運從業(yè)資格證考試題庫
- 分析風(fēng)險的報告范文
- 2025年吉林市貨運從業(yè)資格證模擬考試題庫下載
- 2025年濱州貨運資格證模擬考試題庫
- 2025年衡水貨物從業(yè)資格證考試題
- 《摩擦力受力分析》課件
- 《設(shè)計暴雨》課件
- 2025企業(yè)融資典當(dāng)借款合同
- 跨境電子商務(wù)英語 課件 Unit 1 Overview of Cross-Border E-Commerce、Unit 2 Main Cross-Border E-Commerce Platforms
- 甲狀腺癌科普健康知識講座
- 互聯(lián)網(wǎng)醫(yī)療服務(wù)創(chuàng)業(yè)計劃書
- 上海交通大學(xué)2016年622物理化學(xué)(回憶版)考研真題
- 哲學(xué)與人生總復(fù)習(xí)
- 2023老年陪診服務(wù)規(guī)范
- 安全生產(chǎn)標準化建設(shè)課件
- 物業(yè)環(huán)境管理服務(wù)標準及措施方案
- 衛(wèi)生潔具采購與安裝投標方案(技術(shù)標)
- PICC和CVC規(guī)范化維護及注意事項
- 平整土地施工方案及方法
評論
0/150
提交評論