2023-2024學年山西省忻州市岢嵐中學高三下第三次大考數(shù)學試題_第1頁
2023-2024學年山西省忻州市岢嵐中學高三下第三次大考數(shù)學試題_第2頁
2023-2024學年山西省忻州市岢嵐中學高三下第三次大考數(shù)學試題_第3頁
2023-2024學年山西省忻州市岢嵐中學高三下第三次大考數(shù)學試題_第4頁
2023-2024學年山西省忻州市岢嵐中學高三下第三次大考數(shù)學試題_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年山西省忻州市岢嵐中學高三下第三次大考數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知公差不為0的等差數(shù)列的前項的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.402.某工廠一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個月的平均收入為萬元3.等差數(shù)列中,,,則數(shù)列前6項和為()A.18 B.24 C.36 D.724.已知i是虛數(shù)單位,則1+iiA.-12+32i5.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.6.已知集合,,,則()A. B. C. D.7.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-38.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.9.若,則的值為()A. B. C. D.10.設是虛數(shù)單位,若復數(shù),則()A. B. C. D.11.已知集合,則全集則下列結論正確的是()A. B. C. D.12.函數(shù)y=sin2x的圖象可能是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_____.14.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.15.若實數(shù)滿足約束條件,設的最大值與最小值分別為,則_____.16.在中,內(nèi)角的對邊長分別為,已知,且,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.18.(12分)設函數(shù).(1)時,求的單調(diào)區(qū)間;(2)當時,設的最小值為,若恒成立,求實數(shù)t的取值范圍.19.(12分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值20.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項和;(2)若,求數(shù)列的前n項和為.21.(12分)數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設,為的前n項和,求證:.22.(10分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點N到平面CDM的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

,將代入,求得公差d,再利用等差數(shù)列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數(shù)列的前n項和公式,考查等差數(shù)列基本量的計算,是一道容易題.2.D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤.綜上,故選.3.C【解析】

由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項和公式可得結果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【點睛】本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項和公式的應用,屬于基礎題.4.D【解析】

利用復數(shù)的運算法則即可化簡得出結果【詳解】1+i故選D【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,屬于基礎題。5.B【解析】

把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關鍵.6.D【解析】

根據(jù)集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎題.7.D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應用問題,也考查了數(shù)形結合思想的應用問題.8.D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數(shù)取得最大值,最大值為3;當直線過點時,目標函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規(guī)劃.9.C【解析】

根據(jù),再根據(jù)二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數(shù)學運算能力10.A【解析】

結合復數(shù)的除法運算和模長公式求解即可【詳解】∵復數(shù),∴,,則,故選:A.【點睛】本題考查復數(shù)的除法、模長、平方運算,屬于基礎題11.D【解析】

化簡集合,根據(jù)對數(shù)函數(shù)的性質(zhì),化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.12.D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數(shù),排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復.二、填空題:本題共4小題,每小題5分,共20分。13.-1【解析】

由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了復數(shù)的概念和運算,屬于基礎題.14.0或6【解析】

計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據(jù)直線和圓的位置關系求參數(shù),意在考查學生的計算能力和轉(zhuǎn)化能力。15.【解析】

畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.【點睛】本小題主要考查利用線性規(guī)劃求線性目標函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標函數(shù)的基準函數(shù);接著畫出基準函數(shù)對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎題.16.4【解析】∵∴根據(jù)正弦定理與余弦定理可得:,即∵∴∵∴故答案為4三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對值符號,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因為,要證,只需證,即證,只需證即可得結果.試題解析:(1)去絕對值符號,可得所以,所以,解得,所以實數(shù)的取值范圍為.(2)由(1)知,,所以.因為,所以要證,只需證,即證,即證.因為,所以只需證,因為,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設:證明:x+y-2xy==令,∴原式====當時,18.(1)的增區(qū)間為,減區(qū)間為;(2).【解析】

(1)求出函數(shù)的導數(shù),由于參數(shù)的范圍對導數(shù)的符號有影響,對參數(shù)分類,再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結論,求出的表達式,由于恒成立,故求出的最大值,即得實數(shù)的取值范圍的左端點.【詳解】解:(1)解:,當時,,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;,因為,所以,,令,則恒成立,由于,當時,,故函數(shù)在上是減函數(shù),所以成立;當時,若則,故函數(shù)在上是增函數(shù),即對時,,與題意不符;綜上,為所求.【點睛】本題考查導數(shù)在最大值與最小值問題中的應用,求解本題關鍵是根據(jù)導數(shù)研究出函數(shù)的單調(diào)性,由最值的定義得出函數(shù)的最值,本題中第一小題是求出函數(shù)的單調(diào)區(qū)間,第二小題是一個求函數(shù)的最值的問題,此類題運算量較大,轉(zhuǎn)化靈活,解題時極易因為變形與運算出錯,故做題時要認真仔細.19.(1)證明見解析(2)【解析】

(1)要證明線面平行,需證明線線平行,取的中點,連接,根據(jù)條件證明,即;(2)以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標系,求兩個平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點,連接.∵,∴為的中點.又為的中點,∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標系,不妨設,則,,,,,,,,.設平面的法向量為,則,即,令,得.設平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【點睛】本題考查線面平行的證明和空間坐標法解決二面角的問題,意在考查空間想象能力,推理證明和計算能力,屬于中檔題型,證明線面平行,或證明面面平行時,關鍵是證明線線平行,所以做輔助線或證明時,需考慮構造中位線或平行四邊形,這些都是證明線線平行的常方法.20.(1)(2)【解析】

(1)利用等差數(shù)列的通項公式以及等比中項求出公差,從而求出,再利用等比數(shù)列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點睛】本題考查了等差數(shù)列、等比數(shù)列的通項公式、等比數(shù)列的前項和公式、裂項求和法,需熟記公式,屬于基礎題.21.(1)(2)證明見解析【解析】

(1)利用與的關系即可求解.(2)利用裂項求和法即可求解.【詳解】解析:(1)當時,;當,,可得,又∵當時也成立,;(2),【點睛】本題主要考查了與的關系、裂項求和法,屬于基礎題.22.(1)證明見解析(2)【解析】

(1)因為正方形ABCD所在平面與梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因為平面ABMN,平面ABMN,所以,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論