版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.港珠澳大橋于2018年10月2刻日正式通車(chē),它是中國(guó)境內(nèi)一座連接香港、珠海和澳門(mén)的橋隧工程,橋隧全長(zhǎng)55千米.橋面為雙向六車(chē)道高速公路,大橋通行限速100km/h,現(xiàn)對(duì)大橋某路段上1000輛汽車(chē)的行駛速度進(jìn)行抽樣調(diào)查.畫(huà)出頻率分布直方圖(如圖),根據(jù)直方圖估計(jì)在此路段上汽車(chē)行駛速度在區(qū)間[85,90)的車(chē)輛數(shù)和行駛速度超過(guò)90km/h的頻率分別為()A.300, B.300, C.60, D.60,2.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.3.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.4.在復(fù)平面內(nèi),復(fù)數(shù)z=i對(duì)應(yīng)的點(diǎn)為Z,將向量繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),所得向量對(duì)應(yīng)的復(fù)數(shù)是()A. B. C. D.5.對(duì)兩個(gè)變量進(jìn)行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.6.如圖所示點(diǎn)是拋物線(xiàn)的焦點(diǎn),點(diǎn)、分別在拋物線(xiàn)及圓的實(shí)線(xiàn)部分上運(yùn)動(dòng),且總是平行于軸,則的周長(zhǎng)的取值范圍是()A. B. C. D.7.已知定義在上的奇函數(shù)和偶函數(shù)滿(mǎn)足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.8.函數(shù)的圖象在點(diǎn)處的切線(xiàn)為,則在軸上的截距為()A. B. C. D.9.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫(xiě)成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問(wèn)題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.10.若雙曲線(xiàn)的一條漸近線(xiàn)與圓至多有一個(gè)交點(diǎn),則雙曲線(xiàn)的離心率的取值范圍是()A. B. C. D.11.如圖,拋物線(xiàn):的焦點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),若直線(xiàn)與以為圓心,線(xiàn)段(為坐標(biāo)原點(diǎn))長(zhǎng)為半徑的圓交于,兩點(diǎn),則關(guān)于值的說(shuō)法正確的是()A.等于4 B.大于4 C.小于4 D.不確定12.已知雙曲線(xiàn)()的漸近線(xiàn)方程為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,若函數(shù)在處的切線(xiàn)與圓存在公共點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)____.14.已知函數(shù)的圖象在點(diǎn)處的切線(xiàn)方程是,則的值等于__________.15.已知復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限,則實(shí)數(shù)的范圍為_(kāi)_____.16.如圖在三棱柱中,,,,點(diǎn)為線(xiàn)段上一動(dòng)點(diǎn),則的最小值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知的內(nèi)角,,的對(duì)邊分別為,,,且.(1)求;(2)若的面積為,,求的周長(zhǎng).18.(12分)選修4-2:矩陣與變換(本小題滿(mǎn)分10分)已知矩陣A=(k≠0)的一個(gè)特征向量為α=,A的逆矩陣A-1對(duì)應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.19.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,建立極坐標(biāo)系,判斷直線(xiàn)為參數(shù))與圓的位置關(guān)系.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.21.(12分)設(shè)橢圓的離心率為,左、右焦點(diǎn)分別為,點(diǎn)D在橢圓C上,的周長(zhǎng)為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)圓上任意一點(diǎn)P作圓E的切線(xiàn)l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:為定值.22.(10分)對(duì)于給定的正整數(shù)k,若各項(xiàng)均不為0的數(shù)列滿(mǎn)足:對(duì)任意正整數(shù)總成立,則稱(chēng)數(shù)列是“數(shù)列”.(1)證明:等比數(shù)列是“數(shù)列”;(2)若數(shù)列既是“數(shù)列”又是“數(shù)列”,證明:數(shù)列是等比數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
由頻率分布直方圖求出在此路段上汽車(chē)行駛速度在區(qū)間的頻率即可得到車(chē)輛數(shù),同時(shí)利用頻率分布直方圖能求行駛速度超過(guò)的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車(chē)行駛速度在區(qū)間的頻率為,∴在此路段上汽車(chē)行駛速度在區(qū)間的車(chē)輛數(shù)為:,行駛速度超過(guò)的頻率為:.故選:B.【點(diǎn)睛】本題考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.2.D【解析】
集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.3.A【解析】
根據(jù)復(fù)數(shù)的基本運(yùn)算求解即可.【詳解】.故選:A【點(diǎn)睛】本題主要考查了復(fù)數(shù)的基本運(yùn)算,屬于基礎(chǔ)題.4.A【解析】
由復(fù)數(shù)z求得點(diǎn)Z的坐標(biāo),得到向量的坐標(biāo),逆時(shí)針旋轉(zhuǎn),得到向量的坐標(biāo),則對(duì)應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對(duì)應(yīng)點(diǎn)Z(0,1),
∴=(0,1),將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到,
設(shè)=(a,b),,則,即,
又,解得:,∴,對(duì)應(yīng)復(fù)數(shù)為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.5.D【解析】
作出四個(gè)函數(shù)的圖象及給出的四個(gè)點(diǎn),觀察這四個(gè)點(diǎn)在靠近哪個(gè)曲線(xiàn).【詳解】如圖,作出A,B,C,D中四個(gè)函數(shù)圖象,同時(shí)描出題中的四個(gè)點(diǎn),它們?cè)谇€(xiàn)的兩側(cè),與其他三個(gè)曲線(xiàn)都離得很遠(yuǎn),因此D是正確選項(xiàng),故選:D.【點(diǎn)睛】本題考查回歸分析,擬合曲線(xiàn)包含或靠近樣本數(shù)據(jù)的點(diǎn)越多,說(shuō)明擬合效果好.6.B【解析】
根據(jù)拋物線(xiàn)方程求得焦點(diǎn)坐標(biāo)和準(zhǔn)線(xiàn)方程,結(jié)合定義表示出;根據(jù)拋物線(xiàn)與圓的位置關(guān)系和特點(diǎn),求得點(diǎn)橫坐標(biāo)的取值范圍,即可由的周長(zhǎng)求得其范圍.【詳解】拋物線(xiàn),則焦點(diǎn),準(zhǔn)線(xiàn)方程為,根據(jù)拋物線(xiàn)定義可得,圓,圓心為,半徑為,點(diǎn)、分別在拋物線(xiàn)及圓的實(shí)線(xiàn)部分上運(yùn)動(dòng),解得交點(diǎn)橫坐標(biāo)為2.點(diǎn)、分別在兩個(gè)曲線(xiàn)上,總是平行于軸,因而兩點(diǎn)不能重合,不能在軸上,則由圓心和半徑可知,則的周長(zhǎng)為,所以,故選:B.【點(diǎn)睛】本題考查了拋物線(xiàn)定義、方程及幾何性質(zhì)的簡(jiǎn)單應(yīng)用,圓的幾何性質(zhì)應(yīng)用,屬于中檔題.7.D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因?yàn)?,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點(diǎn)睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.8.A【解析】
求出函數(shù)在處的導(dǎo)數(shù)后可得曲線(xiàn)在處的切線(xiàn)方程,從而可求切線(xiàn)的縱截距.【詳解】,故,所以曲線(xiàn)在處的切線(xiàn)方程為:.令,則,故切線(xiàn)的縱截距為.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及直線(xiàn)的截距,注意直線(xiàn)的縱截距指直線(xiàn)與軸交點(diǎn)的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.9.A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.10.C【解析】
求得雙曲線(xiàn)的漸近線(xiàn)方程,可得圓心到漸近線(xiàn)的距離,由點(diǎn)到直線(xiàn)的距離公式可得的范圍,再由離心率公式計(jì)算即可得到所求范圍.【詳解】雙曲線(xiàn)的一條漸近線(xiàn)為,即,由題意知,直線(xiàn)與圓相切或相離,則,解得,因此,雙曲線(xiàn)的離心率.故選:C.【點(diǎn)睛】本題考查雙曲線(xiàn)的離心率的范圍,注意運(yùn)用圓心到漸近線(xiàn)的距離不小于半徑,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.11.A【解析】
利用的坐標(biāo)為,設(shè)直線(xiàn)的方程為,然后聯(lián)立方程得,最后利用韋達(dá)定理求解即可【詳解】據(jù)題意,得點(diǎn)的坐標(biāo)為.設(shè)直線(xiàn)的方程為,點(diǎn),的坐標(biāo)分別為,.討論:當(dāng)時(shí),;當(dāng)時(shí),據(jù),得,所以,所以.【點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)的相交問(wèn)題,解題核心在于聯(lián)立直線(xiàn)與拋物線(xiàn)的方程,屬于基礎(chǔ)題12.A【解析】
根據(jù)雙曲線(xiàn)方程(),確定焦點(diǎn)位置,再根據(jù)漸近線(xiàn)方程得到求解.【詳解】因?yàn)殡p曲線(xiàn)(),所以,又因?yàn)闈u近線(xiàn)方程為,所以,所以.故選:A.【點(diǎn)睛】本題主要考查雙曲線(xiàn)的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用導(dǎo)數(shù)的幾何意義可求得函數(shù)在處的切線(xiàn),再根據(jù)切線(xiàn)與圓存在公共點(diǎn),利用圓心到直線(xiàn)的距離滿(mǎn)足的條件列式求解即可.【詳解】解:由條件得到又所以函數(shù)在處的切線(xiàn)為,即圓方程整理可得:即有圓心且所以圓心到直線(xiàn)的距離,即.解得或,故答案為:.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義求解切線(xiàn)方程的問(wèn)題,同時(shí)也考查了根據(jù)直線(xiàn)與圓的位置關(guān)系求解參數(shù)范圍的問(wèn)題,屬于基礎(chǔ)題.14.【解析】
利用導(dǎo)數(shù)的幾何意義即可解決.【詳解】由已知,,,故.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,要注意在某點(diǎn)的切線(xiàn)與過(guò)某點(diǎn)的切線(xiàn)的區(qū)別,本題屬于基礎(chǔ)題.15.【解析】
由復(fù)數(shù)對(duì)應(yīng)的點(diǎn),在第二象限,得,且,從而求出實(shí)數(shù)的范圍.【詳解】解:∵復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限,∴,且,∴,故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)與復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)之間的關(guān)系,解不等式,且是解題的關(guān)鍵,屬于基礎(chǔ)題.16.【解析】
把繞著進(jìn)行旋轉(zhuǎn),當(dāng)四點(diǎn)共面時(shí),運(yùn)用勾股定理即可求得的最小值.【詳解】將以為軸旋轉(zhuǎn)至與面在一個(gè)平面,展開(kāi)圖如圖所示,若,,三點(diǎn)共線(xiàn)時(shí)最小為,為直角三角形,故答案為:【點(diǎn)睛】本題考查了空間幾何體的翻折,平面內(nèi)兩點(diǎn)之間線(xiàn)段最短,解直角三角形進(jìn)行求解,考查了空間想象能力和計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】
(1)利用正弦定理將目標(biāo)式邊化角,結(jié)合倍角公式,即可整理化簡(jiǎn)求得結(jié)果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結(jié)合即可求得周長(zhǎng).【詳解】(1)由題設(shè)得.由正弦定理得∵∴,所以或.當(dāng),(舍)故,解得.(2),從而.由余弦定理得.解得.∴.故三角形的周長(zhǎng)為.【點(diǎn)睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應(yīng)用正弦定理將邊化角,屬綜合性基礎(chǔ)題.18.解:設(shè)特征向量為α=對(duì)應(yīng)的特征值為λ,則=λ,即因?yàn)閗≠0,所以a=2.5分因?yàn)?,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點(diǎn):特征向量,逆矩陣點(diǎn)評(píng):本題主要考查了二階矩陣,以及特征值與特征向量的計(jì)算,考查逆矩陣.19.直線(xiàn)與圓C相切.【解析】
首先把直線(xiàn)和圓轉(zhuǎn)換為直角坐標(biāo)方程,進(jìn)一步利用點(diǎn)到直線(xiàn)的距離的應(yīng)用求出直線(xiàn)和圓的位置關(guān)系.【詳解】直線(xiàn)為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為.圓轉(zhuǎn)換為直角坐標(biāo)方程為,轉(zhuǎn)換為標(biāo)準(zhǔn)形式為,所以圓心到直線(xiàn),的距離.直線(xiàn)與圓C相切.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,直線(xiàn)與圓的位置關(guān)系式的應(yīng)用,點(diǎn)到直線(xiàn)的距離公式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.20.(1)見(jiàn)解析;(2)證明見(jiàn)解析.【解析】
(1),分,,,四種情況討論即可;(2)問(wèn)題轉(zhuǎn)化為,利用導(dǎo)數(shù)找到與即可證明.【詳解】(1).①當(dāng)時(shí),恒成立,當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù).②當(dāng)時(shí),,.當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).③當(dāng)時(shí),,則在上是減函數(shù).④當(dāng)時(shí),,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).(2)由題意,得.由(1)知,當(dāng),時(shí),,.令,,故在上是減函數(shù),有,所以,從而.,,則,令,顯然在上是增函數(shù),且,,所以存在使,且在上是減函數(shù),在上是增函數(shù),,所以,所以,命題成立.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式的問(wèn)題,考查學(xué)生邏輯推理能力,是一道較難的題.21.(1)(2)見(jiàn)解析【解析】
(1)由,周長(zhǎng),解得,即可求得標(biāo)準(zhǔn)方程.(2)通過(guò)特殊情況的斜率不存在時(shí),求得,再證明的斜率存在時(shí),即可證得為定值.通過(guò)設(shè)直線(xiàn)的方程為與橢圓方程聯(lián)立,借助韋達(dá)定理求得,利用直線(xiàn)與圓相切,即,求得的關(guān)系代入,化簡(jiǎn)即可證得即可證得結(jié)論.【詳解】(1)由題意得,周長(zhǎng),且.聯(lián)立解得,,所以橢圓C的標(biāo)準(zhǔn)方程為.(2)①當(dāng)直線(xiàn)l的斜率不存在時(shí),不妨設(shè)其方程為,則,所以,即.②當(dāng)直線(xiàn)l的斜率存在時(shí),設(shè)其方程為,并設(shè),由,,,由直線(xiàn)l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,直線(xiàn)與橢圓的位置關(guān)系中定值問(wèn)題,考查了學(xué)生計(jì)算求解能力,難度較難.22.(1)證明見(jiàn)詳解;(2)證明見(jiàn)詳解【解析】
(1)由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋買(mǎi)賣(mài)預(yù)約合同的案例分析解讀
- 房屋戶(hù)外景觀停車(chē)場(chǎng)施工合同
- 圖書(shū)館木門(mén)安裝合同
- 設(shè)備租賃合同:科研儀器租賃模板
- 汕頭賽車(chē)場(chǎng)租賃合同
- 太陽(yáng)能工程監(jiān)理協(xié)議
- 會(huì)計(jì)師事務(wù)所續(xù)租合同
- 員工離職后知識(shí)產(chǎn)權(quán)協(xié)議書(shū)
- 石油企業(yè)安全員聘用合同模板
- 藝術(shù)園區(qū)共建租賃合同
- 施工安全管理經(jīng)驗(yàn)分享
- 陜09J01 建筑用料及做法圖集
- 安全生產(chǎn)責(zé)任清單培訓(xùn)會(huì)
- 湖北省武漢市江漢區(qū)2023-2024學(xué)年五年級(jí)上學(xué)期期末語(yǔ)文試題
- 幕墻維護(hù)與保養(yǎng)技術(shù)
- 美容門(mén)診感染管理制度
- 2023年電商高級(jí)經(jīng)理年度總結(jié)及下一年計(jì)劃
- 模具開(kāi)發(fā)FMEA失效模式分析
- 1-3-二氯丙烯安全技術(shù)說(shuō)明書(shū)MSDS
- 學(xué)生思想政治工作工作證明材料
- 一方出資一方出力合作協(xié)議
評(píng)論
0/150
提交評(píng)論