版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.集合的子集的個數(shù)是()A.2 B.3 C.4 D.82.復數(shù)(i是虛數(shù)單位)在復平面內(nèi)對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.設(shè),若函數(shù)在區(qū)間上有三個零點,則實數(shù)的取值范圍是()A. B. C. D.4.函數(shù)(),當時,的值域為,則的范圍為()A. B. C. D.5.已知,若對任意,關(guān)于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.6.若直線經(jīng)過拋物線的焦點,則()A. B. C.2 D.7.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.8.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.9.是拋物線上一點,是圓關(guān)于直線的對稱圓上的一點,則最小值是()A. B. C. D.10.已知,,,則()A. B. C. D.11.已知向量,,若,則()A. B. C. D.12.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳習近平新時代中國特色社會主義思想為主要內(nèi)容,立足全體黨員、面向全社會的優(yōu)質(zhì)平臺,現(xiàn)已日益成為老百姓了解國家動態(tài),緊跟時代脈搏的熱門app.該款軟件主要設(shè)有“閱讀文章”和“視聽學習”兩個學習板塊和“每日答題”、“每周答題”、“專項答題”、“挑戰(zhàn)答題”四個答題板塊.某人在學習過程中,將六大板塊依次各完成一次,則“閱讀文章”與“視聽學習”兩大學習板塊之間最多間隔一個答題板塊的學習方法有________種.14.若實數(shù)x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標函數(shù)15.設(shè),則除以的余數(shù)是______.16.若x,y均為正數(shù),且,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,點.(1)求曲線的極坐標方程與直線的直角坐標方程;(2)若直線與曲線交于點,曲線與曲線交于點,求的面積.18.(12分)已知函數(shù),.(1)若時,解不等式;(2)若關(guān)于的不等式在上有解,求實數(shù)的取值范圍.19.(12分)已知數(shù)列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項公式;(Ⅱ)設(shè)bn=,Sn為數(shù)列{bn}的前n項和,求證:Sn.20.(12分)已知函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.21.(12分)已知函數(shù),.(1)當時,討論函數(shù)的零點個數(shù);(2)若在上單調(diào)遞增,且求c的最大值.22.(10分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數(shù)隨時間變化的散點圖.為了預測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點圖判斷,與哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數(shù)的真實數(shù)據(jù)19752744451559747111(ⅰ)當1月25日至1月27日這3天的誤差(模型預測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領(lǐng)導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預測數(shù)據(jù),則認為防護措施有效,請判斷預防措施是否有效?附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):其中,.5.539019385764031525154700100150225338507
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
先確定集合中元素的個數(shù),再得子集個數(shù).【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.2.B【解析】
利用復數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復數(shù)(i是虛數(shù)單位)在復平面內(nèi)對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數(shù)的四則運算以及復數(shù)的幾何意義,屬于基礎(chǔ)題.3.D【解析】令,可得.在坐標系內(nèi)畫出函數(shù)的圖象(如圖所示).當時,.由得.設(shè)過原點的直線與函數(shù)的圖象切于點,則有,解得.所以當直線與函數(shù)的圖象切時.又當直線經(jīng)過點時,有,解得.結(jié)合圖象可得當直線與函數(shù)的圖象有3個交點時,實數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個零點時,實數(shù)的取值范圍是.選D.點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對于一些比較復雜的函數(shù)的零點問題常用此方法求解.4.B【解析】
首先由,可得的范圍,結(jié)合函數(shù)的值域和正弦函數(shù)的圖像,可求的關(guān)于實數(shù)的不等式,解不等式即可求得范圍.【詳解】因為,所以,若值域為,所以只需,∴.故選:B【點睛】本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調(diào)性和特殊角的三角函數(shù)值是解題的關(guān)鍵,側(cè)重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).5.B【解析】
構(gòu)造函數(shù)(),求導可得在上單調(diào)遞增,則,問題轉(zhuǎn)化為,即至少有2個正整數(shù)解,構(gòu)造函數(shù),,通過導數(shù)研究單調(diào)性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結(jié)果.【詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問題轉(zhuǎn)化為至少存在兩個正整數(shù)x,使得成立,設(shè),,則,當時,單調(diào)遞增;當時,單調(diào)遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調(diào)性中的應用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.6.B【解析】
計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標為,故.故選:.【點睛】本題考查了拋物線的焦點,屬于簡單題.7.C【解析】
當時,最多一個零點;當時,,利用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.8.A【解析】
根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.9.C【解析】
求出點關(guān)于直線的對稱點的坐標,進而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點關(guān)于直線的對稱點為點,則,整理得,解得,即點,所以,圓關(guān)于直線的對稱圓的方程為,設(shè)點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關(guān)于直線對稱性的應用,考查計算能力,屬于中等題.10.B【解析】
利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.11.A【解析】
利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎(chǔ)題.12.B【解析】
構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域為,且,所以為奇函數(shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先分間隔一個與不間隔分類計數(shù),再根據(jù)捆綁法求排列數(shù),最后求和得結(jié)果.【詳解】若“閱讀文章”與“視聽學習”兩大學習板塊相鄰,則學習方法有種;若“閱讀文章”與“視聽學習”兩大學習板塊之間間隔一個答題板塊的學習方法有種;因此共有種.故答案為:【點睛】本題考查排列組合實際問題,考查基本分析求解能力,屬基礎(chǔ)題.14.12【解析】
畫出約束條件的可行域,求出最優(yōu)解,即可求解目標函數(shù)的最大值.【詳解】根據(jù)約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標函數(shù)y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12.故答案為:12.【點睛】本題考查線性規(guī)劃的簡單應用,屬于基礎(chǔ)題.15.1【解析】
利用二項式定理得到,將89寫成1+88,然后再利用二項式定理展開即可.【詳解】,因展開式中后面10項均有88這個因式,所以除以的余數(shù)為1.故答案為:1【點睛】本題考查二項式定理的綜合應用,涉及余數(shù)的問題,解決此類問題的關(guān)鍵是靈活構(gòu)造二項式,并將它展開分析,本題是一道基礎(chǔ)題.16.4【解析】
由基本不等式可得,則,即可解得.【詳解】方法一:,當且僅當時取等.方法二:因為,所以,所以,當且僅當時取等.故答案為:.【點睛】本題考查基本不等式在求最小值中的應用,考查學生對基本不等式的靈活使用,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1).(2)【解析】
(1)根據(jù)題意代入公式化簡即可得到.(2)聯(lián)立極坐標方程通過極坐標的幾何意義求解,再求點到直線的距離即可算出三角形面積.【詳解】解:(1)曲線,即.∴.曲線的極坐標方程為.直線的極坐標方程為,即,∴直線的直角坐標方程為.(2)設(shè),,∴,解得.又,∴(舍去).∴.點到直線的距離為,∴的面積為.【點睛】此題考查參數(shù)方程,極坐標,直角坐標之間相互轉(zhuǎn)化,注意參數(shù)方程只能先轉(zhuǎn)化為直角坐標再轉(zhuǎn)化為極坐標,屬于較易題目.18.(1)(2)【解析】
(1)零點分段法,分,,討論即可;(2)當時,原問題可轉(zhuǎn)化為:存在,使不等式成立,即.【詳解】解:(1)若時,,當時,原不等式可化為,解得,所以,當時,原不等式可化為,解得,所以,當時,原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當時,由得,即,故得,又由題意知:,即,故的范圍為.【點睛】本題考查解絕對值不等式以及不等式能成立求參數(shù),考查學生的運算能力,是一道容易題.19.(Ⅰ)(Ⅱ)證明見解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,對分奇偶討論,即可得;(Ⅱ)由(Ⅰ)得,用錯位相減法求出,運用分析法證明即可.【詳解】(Ⅰ),當為奇數(shù)時,,又由,得,當為偶數(shù)時,,又由a2=3,得,;(Ⅱ)由(1)得,則①②①-②可得:,,若證明Sn,則需要證明,又,即證明,即證,又顯然成立,故Sn得證.【點睛】本題主要考查了由遞推公式求通項公式,錯位相減法求前項和,分析法證明不等式,考查了分類討論的思想,考查了學生的運算求解與邏輯推理能力.20.(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)分類討論解絕對值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數(shù)單調(diào)性,得到只需,代入計算得到答案.【詳解】(Ⅰ)當時,不等式為,變形為或或,解集為或.(Ⅱ)當時,,由此可知在單調(diào)遞減,在單調(diào)遞增,當時,同樣得到在單調(diào)遞減,在單調(diào)遞增,所以,存在滿足不等式,只需,即,解得.【點睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學生的計算能力和綜合應用能力.21.(1)見解析(2)2【解析】
(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問題為與的交點問題,利用導函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設(shè),利用導函數(shù)可得,則,即,再設(shè),利用導函數(shù)求得的最小值,則,進而求解.【詳解】(1)當時,,定義域為,由可得,令,則,由,得;由,得,所以在上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年美發(fā)店承包合同
- 山林轉(zhuǎn)包合同范本
- 2024年醫(yī)療器械代理銷售協(xié)議書
- 房產(chǎn)項目招商代理協(xié)議
- 消防設(shè)施維保合同
- 個人二手車轉(zhuǎn)讓協(xié)議書2024年
- 大連市貨運代理合同
- 2024年標準版離婚協(xié)議書格式
- 校園綠化合同:校園綠化養(yǎng)護承包協(xié)議
- 典型空調(diào)租賃合同
- 教學課件:《C++程序設(shè)計教程》章韻
- 2014國際航運函電英語課件國航第七課時
- 《民法典》全文學習PPT
- 破產(chǎn)法PPT課件
- 金融衍生工具ppt課件
- 光電效應測定普朗克常數(shù).ppt
- “讓學引思”高效課堂推進策略的研究
- 《培訓機構(gòu)教師薪酬制度》
- 點子圖方格紙合計
- 乘法的故事(小學二年級課前小故事).ppt
- 《骨盆重要性》PPT課件.ppt
評論
0/150
提交評論