2023屆山東省鄒平雙語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
2023屆山東省鄒平雙語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
2023屆山東省鄒平雙語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
2023屆山東省鄒平雙語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
2023屆山東省鄒平雙語學(xué)校九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,一條拋物線與x軸相交于A、B兩點(點A在點B的左側(cè)),其頂點P在線段MN上移動.若點M、N的坐標(biāo)分別為(-1,-1)、(2,-1),點B的橫坐標(biāo)的最大值為3,則點A的橫坐標(biāo)的最小值為()A.-3 B.-2.5 C.-2 D.-1.52.已知一組數(shù)據(jù)共有個數(shù),前面?zhèn)€數(shù)的平均數(shù)是,后面?zhèn)€數(shù)的平均數(shù)是,則這個數(shù)的平均數(shù)是()A. B. C. D.3.在中,,、的對邊分別是、,且滿足,則等于()A. B.2 C. D.4.下列事件是必然事件的是()A.任意購買一張電影票,座號是“7排8號” B.射擊運動員射擊一次,恰好命中靶心C.拋擲一枚圖釘,釘尖觸地 D.13名同學(xué)中,至少2人出生的月份相同5.用min{a,b}表示a,b兩數(shù)中的最小數(shù),若函數(shù),則y的圖象為()A. B. C. D.6.二位同學(xué)在研究函數(shù)(為實數(shù),且)時,甲發(fā)現(xiàn)當(dāng)0<<1時,函數(shù)圖像的頂點在第四象限;乙發(fā)現(xiàn)方程必有兩個不相等的實數(shù)根,則()A.甲、乙的結(jié)論都錯誤 B.甲的結(jié)論正確,乙的結(jié)論錯誤C.甲、乙的結(jié)論都正確 D.甲的結(jié)論錯誤,乙的結(jié)論正確7.如圖是一個圓柱形輸水管橫截面的示意圖,陰影部分為有水部分,如果水面AB的寬為8cm,水面最深的地方高度為2cm,則該輸水管的半徑為()A.3cm B.5cm C.6cm D.8cm8.如圖,在直線上有相距的兩點和(點在點的右側(cè)),以為圓心作半徑為的圓,過點作直線.將以的速度向右移動(點始終在直線上),則與直線在______秒時相切.A.3 B.3.5 C.3或4 D.3或3.59.已知點,,在二次函數(shù)的圖象上,則的大小關(guān)系是()A. B. C. D.10.如圖,點B、D、C是⊙O上的點,∠BDC=130°,則∠BOC是()A.100° B.110° C.120° D.130°11.如圖所示,在⊙O中,=,∠A=30°,則∠B=()A.150° B.75° C.60° D.15°12.如圖,過反比例函數(shù)的圖像上一點A作AB⊥軸于點B,連接AO,若S△AOB=2,則的值為()A.2 B.3 C.4 D.5二、填空題(每題4分,共24分)13.如圖,O是正方形ABCD邊上一點,以O(shè)為圓心,OB為半徑畫圓與AD交于點E,過點E作⊙O的切線交CD于F,將△DEF沿EF對折,點D的對稱點D'恰好落在⊙O上.若AB=6,則OB的長為_____.14.如圖是某幼兒園的滑梯的簡易圖,已知滑坡AB的坡度是1:3,滑梯的水平寬是6m,則高BC為_______m.15.已知兩圓內(nèi)切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.16.如圖,已知⊙O的半徑是2,點A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為_____.17.邊長為1的正方形,在邊上取一動點,連接,作,交邊于點,若的長為,則的長為__________.18.一個不透明的布袋中裝有3個白球和5個紅球,它們除了顏色不同外,其余均相同,從中隨機摸出一個球,摸到紅球的概率是______.三、解答題(共78分)19.(8分)定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.理解:(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(畫出1個即可);(2)如圖2,在四邊形ABCD中,,對角線BD平分∠ABC.求證:BD是四邊形ABCD的“相似對角線”;運用:(3)如圖3,已知FH是四邊形EFGH的“相似對角線”,∠EFH=∠HFG=.連接EG,若△EFG的面積為,求FH的長.20.(8分)如圖,在平面直角坐標(biāo)系中有點A(1,5),B(2,2),將線段AB繞P點逆時針旋轉(zhuǎn)90°得到線段CD,A和C對應(yīng),B和D對應(yīng).(1)若P為AB中點,畫出線段CD,保留作圖痕跡;(2)若D(6,2),則P點的坐標(biāo)為,C點坐標(biāo)為.(3)若C為直線上的動點,則P點橫、縱坐標(biāo)之間的關(guān)系為.21.(8分)已知拋物線y=﹣x2+mx+m﹣2的頂點為A,且經(jīng)過點(3,﹣3).(1)求拋物線的解析式及頂點A的坐標(biāo);(2)將原拋物線沿射線OA方向進(jìn)行平移得到新的拋物線,新拋物線與射線OA交于C,D兩點,如圖,請問:在拋物線平移的過程中,線段CD的長度是否為定值?若是,請求出這個定值;若不是,請說明理由.22.(10分)(1)x2+2x﹣3=0(2)(x﹣1)2=3(x﹣1)23.(10分)(1)計算:4sin260°+tan45°-8cos230°(2)在Rt△ABC中,∠C=90°.若∠A=30°,b=5,求a、c.24.(10分)如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點為B.(1)求證:;(2)若AB=5,AD=8,求⊙O的半徑.25.(12分)如圖,在△ABC中,DE∥BC,,M為BC上一點,AM交DE于N.(1)若AE=4,求EC的長;(2)若M為BC的中點,S△ABC=36,求S△ADN的值.26.若二次函數(shù)y=ax2+bx﹣2的圖象與x軸交于點A(4,0),與y軸交于點B,且過點C(3,﹣2).(1)求二次函數(shù)表達(dá)式;(2)若點P為拋物線上第一象限內(nèi)的點,且S△PBA=5,求點P的坐標(biāo);(3)在AB下方的拋物線上是否存在點M,使∠ABO=∠ABM?若存在,求出點M到y(tǒng)軸的距離;若不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)頂點P在線段MN上移動,又知點M、N的坐標(biāo)分別為(-1,-2)、(1,-2),分別求出對稱軸過點M和N時的情況,即可判斷出A點坐標(biāo)的最小值.【詳解】解:根據(jù)題意知,點B的橫坐標(biāo)的最大值為3,當(dāng)對稱軸過N點時,點B的橫坐標(biāo)最大,∴此時的A點坐標(biāo)為(1,0),當(dāng)對稱軸過M點時,點A的橫坐標(biāo)最小,此時的B點坐標(biāo)為(0,0),∴此時A點的坐標(biāo)最小為(-2,0),∴點A的橫坐標(biāo)的最小值為-2,故選:C.【點睛】本題主要考查二次函數(shù)的綜合題的知識點,解答本題的關(guān)鍵是熟練掌握二次函數(shù)的圖象對稱軸的特點,此題難度一般.2、C【分析】由題意可以求出前14個數(shù)的和,后6個數(shù)的和,進(jìn)而得到20個數(shù)的總和,從而求出20個數(shù)的平均數(shù).【詳解】解:由題意得:(10×14+15×6)÷20=11.5,故選:C.【點睛】此題考查平均數(shù)的意義和求法,求出這些數(shù)的總和,再除以總個數(shù)即可..3、B【分析】求出a=2b,根據(jù)銳角三角函數(shù)的定義得出tanA=,代入求出即可.【詳解】解:a2-ab-2b2=0,

(a-2b)(a+b)=0,

則a=2b,a=-b(舍去),

則tanA==2,

故選:B.【點睛】本題考查了解二元二次方程和銳角三角函數(shù)的定義的應(yīng)用,注意:tanA=.4、D【分析】根據(jù)必然事件的定義即可得出答案.【詳解】ABC均為隨機事件,D是必然事件,故答案選擇D.【點睛】本題考查的是必然事件的定義:一定會發(fā)生的事情.5、C【分析】根據(jù)題意,把問題轉(zhuǎn)化為二次函數(shù)問題.【詳解】根據(jù)題意,min{x2+1,1-x2}表示x2+1與1-x2中的最小數(shù),不論x取何值,都有x2+1≥1-x2,所以y=1-x2;可知,當(dāng)x=0時,y=1;當(dāng)y=0時,x=±1;則函數(shù)圖象與x軸的交點坐標(biāo)為(1,0),(-1,0);與y軸的交點坐標(biāo)為(0,1).故選C.【點睛】考核知識點:二次函數(shù)的性質(zhì).6、D【分析】先根據(jù)函數(shù)的解析式可得頂點的橫坐標(biāo),結(jié)合判斷出橫坐標(biāo)可能取負(fù)值,從而判斷甲不正確;再通過方程的根的判別式判斷其根的情況,從而判斷乙的說法.【詳解】,原函數(shù)定為二次函數(shù)甲:頂點橫坐標(biāo)為,,所以甲不正確乙:原方程為,化簡得:必有兩個不相等的實數(shù)根,所以乙正確故選:D.【點睛】本題考查二次函數(shù)圖象的性質(zhì)、頂點坐標(biāo)、一元二次方程的根的判別式,對于一般形式有:(1)當(dāng),方程有兩個不相等的實數(shù)根;(2)當(dāng),方程有兩個相等的實數(shù)根;(3)當(dāng),方程沒有實數(shù)根.7、B【分析】先過點O作OD⊥AB于點D,連接OA,由垂徑定理可知AD=AB,設(shè)OA=r,則OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【詳解】解:如圖所示:過點O作OD⊥AB于點D,連接OA,∵OD⊥AB,∴AD=AB=4cm,設(shè)OA=r,則OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴該輸水管的半徑為5cm;故選:B.【點睛】此題主要考查垂徑定理,解題的關(guān)鍵是熟知垂徑定理及勾股定理的運用.8、C【分析】根據(jù)與直線AB的相對位置分類討論:當(dāng)在直線AB左側(cè)并與直線AB相切時,根據(jù)題意,先計算運動的路程,從而求出運動時間;當(dāng)在直線AB右側(cè)并與直線AB相切時,原理同上.【詳解】解:當(dāng)在直線AB左側(cè)并與直線AB相切時,如圖所示∵的半徑為1cm,AO=7cm∴運動的路程=AO-=6cm∵以的速度向右移動∴此時的運動時間為:÷2=3s;當(dāng)在直線AB右側(cè)并與直線AB相切時,如圖所示∵的半徑為1cm,AO=7cm∴運動的路程=AO+=8cm∵以的速度向右移動∴此時的運動時間為:÷2=4s;綜上所述:與直線在3或4秒時相切故選:C.【點睛】此題考查的是直線與圓的位置關(guān)系:相切和動圓問題,掌握相切的定義和行程問題公式:時間=路程÷速度是解決此題的關(guān)鍵.9、D【分析】根據(jù)二次函數(shù)的解析式,能得出二次函數(shù)的圖形開口向上,通過對稱軸公式得出二次函數(shù)的對稱軸為x=3,由此可知離對稱軸水平距離越遠(yuǎn),函數(shù)值越大即可求解.【詳解】解:∵二次函數(shù)中a>0∴拋物線開口向上,有最小值.∵∴離對稱軸水平距離越遠(yuǎn),函數(shù)值越大,∵由二次函數(shù)圖像的對稱性可知x=4對稱點x=2∴故選:D.【點睛】本題主要考查的是二次函數(shù)圖像上點的坐標(biāo)特點,解此題的關(guān)鍵是掌握二次函數(shù)圖像的性質(zhì).10、A【分析】首先在優(yōu)弧上取點E,連接BE,CE,由點B、D、C是⊙O上的點,∠BDC=130°,即可求得∠E的度數(shù),然后由圓周角定理,即可求得答案.【詳解】解:在優(yōu)弧上取點E,連接BE,CE,如圖所示:

∵∠BDC=130°,

∴∠E=180°-∠BDC=50°,

∴∠BOC=2∠E=100°.

故選A.【點睛】此題考查了圓周角定理以及圓的內(nèi)接四邊形的性質(zhì).此題難度不大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.11、B【詳解】∵在⊙O中,=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形內(nèi)角和定理).故選B.考點:圓心角、弧、弦的關(guān)系.12、C【解析】試題分析:觀察圖象可得,k>0,已知S△AOB=2,根據(jù)反比例函數(shù)k的幾何意義可得k=4,故答案選C.考點:反比例函數(shù)k的幾何意義.二、填空題(每題4分,共24分)13、【解析】連接OE、OD′,作OH⊥ED′于H,通過證得AEO≌△HEO(AAS),AE=EH=ED=2,設(shè)OB=OE=x.則AO=6﹣x,根據(jù)勾股定理得x2=22+(6﹣x)2,解方程即可求得結(jié)論.【詳解】解:連接OE、OD′,作OH⊥ED′于H,∴EH=D′H=ED′∵ED′=ED,∴EH=ED,∵四邊形ABCD是正方形,∴∠A=90°,AB=AD=6,∵EF是⊙O的切線,∴OE⊥EF,∴∠OEH+∠D′EF=90°,∠AEO+∠DEF=90°,∵∠DEF=∠D′EF,∴∠AEO=∠HEO,在△AEO和△HEO中∴△AEO≌△HEO(AAS),∴AE=EH=ED,∴設(shè)OB=OE=x.則AO=6﹣x,在Rt△AOE中,x2=22+(6﹣x)2,解得:x=,∴OB=,故答案為:.【點睛】本題是圓的綜合題目,考查了切線的性質(zhì)和判定、正方形的性質(zhì)、勾股定理,方程,全等三角形的判定與性質(zhì)等知識;本題主要考查了圓的切線及全等三角形的判定和性質(zhì),關(guān)鍵是作出輔助線利用三角形全等證明.14、1【分析】根據(jù)滑坡的坡度及水平寬,即可求出坡面的鉛直高度.【詳解】∵滑坡AB的坡度是1:3,滑坡的水平寬度是6m,

∴AC=6m,∴BC=×6=1m.故答案為:1.【點睛】本題考查了解直角三角形的應(yīng)用中的坡度問題,牢記坡度的定義是解題的關(guān)鍵.15、1【解析】由兩圓的半徑分別為2和5,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系和兩圓位置關(guān)系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內(nèi)切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.16、【分析】連接OB和AC交于點D,根據(jù)菱形及直角三角形的性質(zhì)先求出AC的長及∠AOC的度數(shù),然后求出菱形ABCO及扇形AOC的面積,則由S扇形AOC-S菱形ABCO可得答案.【詳解】連接OB和AC交于點D,如圖所示:∵圓的半徑為2,∴OB=OA=OC=2,又四邊形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=則圖中陰影部分面積為S扇形AOC﹣S菱形ABCO=故答案為【點睛】本題考查扇形面積的計算及菱形的性質(zhì),解題關(guān)鍵是熟練掌握菱形的面積和扇形的面積,有一定的難度.17、或【分析】根據(jù)正方形的內(nèi)角為90°,以及同角的余角相等得出三角形的兩個角相等,從而推知△ABE∽△ECF,得出,代入數(shù)值得到關(guān)于CE的一元二次方程,求解即可.【詳解】解:∵正方形ABCD,

∴∠B=∠C,∠BAE+∠BEA=90°,

∵EF⊥AE,

∴∠BEA+∠CEF=90°,

∴∠BAE=∠CEF,

∴△ABE∽△ECF,.解得,CE=或.故答案為:或.【點睛】考查了四邊形綜合題型,需要掌握三角形相似的判定與性質(zhì),正方形的性質(zhì)以及一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)相似三角形得出一元二次方程,難度不大.18、【分析】根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】根據(jù)題意可得:一個不透明的袋中裝有除顏色外其余均相同的3個白球和5個紅球,共5個,從中隨機摸出一個,則摸到紅球的概率是故答案為:.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題(共78分)19、(1)詳見解析;(2)詳見解析;(3)4【分析】(1)根據(jù)“相似對角線”的定義,利用方格紙的特點可找到D點的位置.(2)通過導(dǎo)出對應(yīng)角相等證出∽,根據(jù)四邊形ABCD的“相似對角線”的定義即可得出BD是四邊形ABCD的“相似對角線”.(3)根據(jù)四邊形“相似對角線”的定義,得出∽,利用對應(yīng)邊成比例,結(jié)合三角形面積公式即可求.【詳解】解:(1)如圖1所示.(2)證明:平分,∽∴BD是四邊形的“相似對角線”.(3)是四邊形的“相似對角線”,三角形與三角形相似.又∽過點作垂足為則【點睛】本題考查相似三角形的判定與性質(zhì)的綜合應(yīng)用及解直角三角形,對于這種新定義閱讀材料題目讀,懂題意是解答此題的關(guān)鍵.20、(1)見解析;(2)(4,4),(3,1);(3).【分析】(1)根據(jù)題意作線段CD即可;(2)根據(jù)題意畫出圖形即可解決問題;(3)因為點C的運動軌跡是直線,所以點P的運動軌跡也是直線,找到當(dāng)C坐標(biāo)為(0,0)時,P'的坐標(biāo),利用待定系數(shù)法即可求出關(guān)系式.【詳解】(1)如圖所示,線段CD即為所求,(2)如圖所示,P點坐標(biāo)為(4,4),C點坐標(biāo)為(3,1),故答案為:(4,4),(3,1).(3)如圖所示,∵點C的運動軌跡是直線,∴點P的運動軌跡也是直線,當(dāng)C點坐標(biāo)為(3,1)時,P點坐標(biāo)為(4,4),當(dāng)C點坐標(biāo)為(0,0)時,P'的坐標(biāo)為(3,2),設(shè)直線PP'的解析式為,則有,解得,∴P點橫、縱坐標(biāo)之間的關(guān)系為,故答案為:.【點睛】本題考查網(wǎng)格作圖和一次函數(shù)的解析式,熟練掌握旋轉(zhuǎn)變換的特征是解題的關(guān)鍵.21、(1)y=﹣x2+2x,頂點A的坐標(biāo)是(1,1);(2)CD長為定值.【分析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)配方法,可得頂點坐標(biāo);(2)根據(jù)平移規(guī)律,可設(shè)出新拋物線解析式,聯(lián)立拋物線與直線OA,可得C、D點的橫坐標(biāo),根據(jù)勾股定理,可得答案.【詳解】解:(1)把(3,﹣3)代入y=﹣x2+mx+m-2得:﹣3=﹣32+3m+m-2,解得m=2,∴y=﹣x2+2x,∴y=﹣x2+2x=﹣(x-1)2+1,∴頂點A的坐標(biāo)是(1,1);(2)易得直線OA的解析式為y=x,平移后拋物線頂點在直線OA上,設(shè)平移后頂點為(a,a),∴可設(shè)新的拋物線解析式為y=﹣(x﹣a)2+a,聯(lián)立解得:x1=a,x2=a﹣1,∴C(a-1,a-1),D(a,a),即C、D兩點間的橫坐標(biāo)的差為1,縱坐標(biāo)的差也為1,∴CD=∴CD長為定值.【點睛】本題考查了二次函數(shù)綜合題,利用待定系數(shù)法求函數(shù)解析式,再利用解析式確定頂點坐標(biāo);根據(jù)平移規(guī)律確定拋物線解析式,通過聯(lián)立解析式確定交點坐標(biāo),利用勾股定理求解.22、(1)x=﹣3或x=1;(2)x=1或x=4.【分析】(1)用因式分解法求解即可;(2)先移項,再用因式分解法求解即可.【詳解】解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x=﹣3或x=1;(2)∵(x﹣1)2=3(x﹣1),∴(x﹣1)[(x﹣1)﹣3]=0,∴(x﹣1)(x﹣4)=0,∴x=1或x=4;【點睛】本題考查了一元二次方程的解法,常用的方法由直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關(guān)鍵.23、(1)2;(2)a=5,c=1【分析】(1)分別把各特殊角的三角函數(shù)值代入,再根據(jù)二次根式混合運算的法則進(jìn)行計算即可;(2)由直角三角形的性質(zhì)可得c=2a,由勾股定理可求解.【詳解】(1)原式=4×()2+1﹣8×()2=3+1﹣6=﹣2;(2)∵∠C=90°,∠A=30°,∴c=2a.∵a2+b2=c2,∴,∴3a2=75,∴a=5(負(fù)數(shù)舍去),∴c=1.【點睛】本題考查了直角三角形的性質(zhì),勾股定理,特殊角的三角函數(shù)值,熟記各特殊角度的三角函數(shù)值是解答本題的關(guān)鍵.24、(1)證明見解析;(2)⊙O的半徑為【分析】(1)連接OB,根據(jù)題意求證OB⊥AD,利用垂徑定理求證;(2)根據(jù)垂徑定理和勾股定理求解.【詳解】解:(1)連接OB,交AD于點E.∵BC是⊙O的切線,切點為B,∴OB⊥BC.∴∠OBC=90°∵四邊形ABCD是平行四邊形∴AD//BC∴∠OED=∠OBC=90°∴OE⊥AD又∵OE過圓心O∴(2)∵OE⊥AD,OE過圓心O∴AE=AD=4在Rt△ABE中,∠AEB=90°,BE==3,設(shè)⊙O的半徑為r,則OE=r-3在Rt△ABE中,∠OEA=90°,OE2+AE2=OA2即(r-3)2+42=r2∴r=∴⊙O的半徑為【點睛】掌握垂徑定理和勾股定理是本題的解題關(guān)鍵.25、(1)2(2)8【解析】(1)首先根據(jù)DE∥BC得到△ADE和△ABC相似,求出AC的長度,然后根據(jù)CE=AC-AE求出長度;(2)根據(jù)△ABC的面積求出△ABM的面積,然后根據(jù)相似三角形的面積比等于相似比的平方求出△ADN的面積.【詳解】解:(1)∵DE∥BC∴△ADE∽△ABC∴∵AE=4∴AC=6∴EC=AC-AE=6-4=2(2)∵△ABC的面積為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論