版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省重點六校協(xié)作體2024屆高一數(shù)學第二學期期末經(jīng)典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若關(guān)于的不等式的解集為,則A. B.C. D.2.若,則下列結(jié)論不正確的是()A. B. C. D.3.趙爽是三國時期吳國的數(shù)學家,他創(chuàng)制了一幅“勾股圓方圖”,也稱“趙爽弦圖”,如圖,若在大正方形內(nèi)隨機取-點,這一點落在小正方形內(nèi)的概率為,則勾與股的比為()A. B. C. D.4.在三棱柱中,底面,是正三角形,若,則該三棱柱外接球的表面積為()A. B. C. D.5.下列向量組中,能作為表示它們所在平面內(nèi)的所有向量的基底的是()A., B.,C., D.,6.已知點在直線上,若存在滿足該條件的使得不等式成立,則實數(shù)的取值范圍是()A. B. C. D.7.當時,不等式恒成立,則實數(shù)m的取值范圍是()A. B. C. D.8.過點P(0,2)作直線x+my﹣4=0的垂線,垂足為Q,則Q到直線x+2y﹣14=0的距離最小值為()A.0 B.2 C. D.29.已知圓,設(shè)平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.4910.等差數(shù)列{}中,=2,=7,則=()A.10 B.20 C.16 D.12二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則__________.12.若無窮等比數(shù)列的各項和等于,則的取值范圍是_____.13.一個社會調(diào)查機構(gòu)就某地居民收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出了如圖所示的頻率分布直方圖,現(xiàn)要從這10000人中再用分層抽樣的方法抽出100人作進一步調(diào)查,則月收入在(元)內(nèi)的應抽出___人.14.__________.15.等比數(shù)列中首項,公比,則______.16.計算__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.(1)若,,分別寫出數(shù)列和數(shù)列的通項公式;(2)若是奇函數(shù),且,求;(3)若函數(shù)的圖像關(guān)于點對稱,且當時,函數(shù)取得最小值,求的最小值.18.在平面直角坐標系中,O是坐標原點,向量若C是AB所在直線上一點,且,求C的坐標.若,當,求的值.19.已知函數(shù).(1)求的最小正周期和上的單調(diào)增區(qū)間:(2)若對任意的和恒成立,求實數(shù)的取值范圍.20.在平面直角坐標系中,點,點P在x軸上(1)若,求點P的坐標:(2)若的面積為10,求點P的坐標.21.已知三角形ABC的頂點為,,,M為AB的中點.(1)求CM所在直線的方程;(2)求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由題意可得,且,3為方程的兩根,運用韋達定理可得,,的關(guān)系,可得的解析式,計算,(1),(4),比較可得所求大小關(guān)系.【詳解】關(guān)于的不等式的解集為,可得,且,3為方程的兩根,可得,,即,,,,可得,(1),(4),可得(4)(1),故選.【點睛】本題主要考查二次函數(shù)的圖象和性質(zhì)、函數(shù)與方程的思想,以及韋達定理的運用。2、C【解析】
A、B利用不等式的基本性質(zhì)即可判斷出;C利用指數(shù)函數(shù)的單調(diào)性即可判斷出;D利用基本不等式的性質(zhì)即可判斷出.【詳解】A,
∵b<a<0,∴?b>?a>0,∴,正確;B,∵b<a<0,∴,正確;C,
,因此C不正確;D,,正確,綜上可知:只有C不正確,故選:C.【點睛】本題主要考查不等式的基本性質(zhì),屬于基礎(chǔ)題.解答過程注意考慮參數(shù)的正負,確定不等號的方向是解題的關(guān)鍵.3、B【解析】
分別求解出小正方形和大正方形的面積,可知面積比為,從而構(gòu)造方程可求得結(jié)果.【詳解】由圖形可知,小正方形邊長為小正方形面積為:,又大正方形面積為:,即:解得:本題正確選項:【點睛】本題考查幾何概型中的面積型的應用,關(guān)鍵是能夠利用概率構(gòu)造出關(guān)于所求量的方程.4、C【解析】
設(shè)球心為,的中心為,求出與,利用勾股定理求出外接球的半徑,代入球的表面積公式即可.【詳解】設(shè)球心為,的中心為,則,,球的半徑,所以球的表面積為.故選:C【點睛】本題考查多面體外接球問題,球的表面積公式,屬于中檔題.5、B【解析】
以作為基底的向量需要是不共線的向量,可以從向量的坐標發(fā)現(xiàn),,選項中的兩個向量均共線,得到正確結(jié)果是.【詳解】解:可以作為基底的向量需要是不共線的向量,中一個向量是零向量,兩個向量共線,不合要求中兩個向量是,,則故與不共線,故正確;中兩個向量是,兩個向量共線,項中的兩個向量是,兩個向量共線,故選:.【點睛】本題考查平面中兩向量的關(guān)系,屬于基礎(chǔ)題.6、B【解析】
根據(jù)題干得到,存在滿足該條件的使得不等式成立,即,再根據(jù)均值不等式得到最小值為9,再由二次不等式的解法得到結(jié)果.【詳解】點在直線上,故得到,存在滿足該條件的使得不等式成立,即故原題轉(zhuǎn)化為故答案為:B【點睛】本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.解決二元的范圍或者最值問題,常用的方法有:不等式的應用,二元化一元的應用,線性規(guī)劃的應用,等.7、A【解析】
當x>0時,不等式x2﹣mx+9>0恒成立?m<(x)min,利用基本不等式可求得(x)min=6,從而可得實數(shù)m的取值范圍.【詳解】當x>0時,不等式x2﹣mx+9>0恒成立?當x>0時,不等式m<x恒成立?m<(x)min,當x>0時,x26(當且僅當x=3時取“=”),因此(x)min=6,所以m<6,故選A.【點睛】本題考查函數(shù)恒成立問題,分離參數(shù)m是關(guān)鍵,考查等價轉(zhuǎn)化思想與基本不等式的應用,屬于中檔題.8、C【解析】
由直線過定點,得到的中點,由垂直直線,得到點在以點為圓心,以為半徑的圓,求得圓的方程,由此求出到直線的距離最小值,得到答案.【詳解】由題意,過點作直線的垂線,垂足為,直線過定點,由中點公式可得,的中點,由垂直直線,所以點點在以點為圓心,以為半徑的圓,其圓的方程為,則圓心到直線的距離為所以點到直線的距離最小值;,故選:C.【點睛】本題主要考查了圓的標準方程,直線與圓的位置關(guān)系的應用,同時涉及到點到直線的距離公式的應用,著重考查了推理與計算能力,以及分析問題和解答問題的能力,試題綜合性強,屬于中檔試題.9、C【解析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因為圓心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當圓心C位于B點時,取得最大值,B點的坐標為,即時是最大值.考點:線性規(guī)劃綜合問題.10、D【解析】
根據(jù)等差數(shù)列的性質(zhì)可知第五項減去第三項等于公差的2倍,由=+5得到2d等于5,然后再根據(jù)等差數(shù)列的性質(zhì)得到第七項等于第五項加上公差的2倍,把的值和2d的值代入即可求出的值,即可知=,故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
對已知等式的左右兩邊同時平方,利用同角的三角函數(shù)關(guān)系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【詳解】因為,所以,即,所以.【點睛】本題考查了同角的三角函數(shù)關(guān)系,考查了二倍角的正弦公式和余弦公式,考查了數(shù)學運算能力.12、.【解析】
根據(jù)題意可知,,從而得出,再由,即可求出的取值范圍.【詳解】解:由題意可知,,且,,,,或,故的取值范圍是,故答案為:.【點睛】本題主要考查等比數(shù)列的極限問題,解題時要熟練掌握無窮等比數(shù)列的極限和,屬于基礎(chǔ)題.13、25【解析】由直方圖可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分層抽樣應抽出人.故答案為25.14、【解析】
利用誘導公式以及正弦差角公式化簡式子,之后利用特殊角的三角函數(shù)值直接計算即可.【詳解】.故答案為【點睛】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點有誘導公式,差角正弦公式,特殊角的三角函數(shù)值,屬于簡單題目.15、9【解析】
根據(jù)等比數(shù)列求和公式,將進行轉(zhuǎn)化,然后得到關(guān)于和的等式,結(jié)合,討論出和的值,得到答案.【詳解】因為等比數(shù)列中首項,公比,所以成首項為,公比為的等比數(shù)列,共項,所以整理得因為所以可得,等式右邊為整數(shù),故等式左邊也需要為整數(shù),則應是的約數(shù),所以可得,所以,當時,得,此時當時,得,此時當時,得,此時,所以,故答案為:.【點睛】本題考查等比數(shù)列求和的基本量運算,涉及分類討論的思想,屬于中檔題.16、【解析】
采用分離常數(shù)法對所給極限式變形,可得到極限值.【詳解】.【點睛】本題考查分離常數(shù)法求極限,難度較易.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2);(3)1【解析】
(1)根據(jù)等差數(shù)列、等比數(shù)列的通項公式即可求解;(2)根據(jù)奇函數(shù)的定義得出,化簡得,解方程可得(3)將化成的形式,依題意有,從而得到,因為當時,函數(shù)取得最小值,所以,兩式相減即可求解.【詳解】(1)由等差數(shù)列、等比數(shù)列的通項公式可得,;(2)因為,所以即,所以又由,得(3)記,則,其中;因為的圖像關(guān)于點對稱,所以①因為當時,函數(shù)取得最小值,所以②②-①得,因為,當,時,取得最小值為0【點睛】本題主要考查了等差數(shù)列、等比數(shù)列的通項公式的求法、三角函數(shù)的化簡以及正弦型函數(shù)圖像的性質(zhì),考查較全面,屬于難題.18、(1);(2)或1【解析】
由向量共線的坐標運算得:設(shè),可得,又因為,,即.由題意結(jié)合向量加減法與數(shù)量積的運算化簡得,所以,運算可得解.【詳解】,因為C是AB所在直線上一點,設(shè),可得,又因為,所以,解得,所以,故答案為且,顯然,所以,,又所以,即,所以,所以即,解得:或,故答案為或1.【點睛】本題考查了向量共線的坐標運算及平面向量數(shù)量積的運算,屬于中檔題.19、(1)T=π,單調(diào)增區(qū)間為,(2)【解析】
(1)化簡函數(shù)得到,再計算周期和單調(diào)區(qū)間.(2)分情況的不同奇偶性討論,根據(jù)函數(shù)的最值得到答案.【詳解】解:(1)函數(shù)故的最小正周期.由題意可知:,解得:,因為,所以的單調(diào)增區(qū)間為,(2)由(1)得∵∴,∴,若對任意的和恒成立,則的最小值大于零.當為偶數(shù)時,,所以,當為奇數(shù)時,,所以,綜上所述,的范圍為.【點睛】本題考查了三角函數(shù)化簡,周期,單調(diào)性,恒成立問題,綜合性強,意在考查學生的計算能力和綜合應用能力.20、(1);(2)或【解析】
(1)利用兩直線垂直,斜率之積為-1進行求解(2)將三角形的面積問題轉(zhuǎn)化成點到直線的距離公式進行求解【詳解】(1)設(shè)P點坐標為,由題意,直線AB的斜率;因為,所以直線PB存在斜率且,即,解得;故點P的坐標為;(2)設(shè)P點坐標為,P到直線AB的距離為d;由已知,直線AB的方程為;的面積.得,即,解得或;所以點P的坐標為或【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級數(shù)學計算題專項練習匯編及答案
- 高效農(nóng)業(yè)項目規(guī)劃方案
- 《科學》六年級上冊修訂版解讀
- Unit1 Grammar time (練習及解析)譯林版(三起)-六年級英語上冊
- 防溺水安全領(lǐng)導講話稿7篇
- 最美笑臉活動策劃6篇
- 船員勞務派遣(3篇)
- 合同范本尾款
- 五年級數(shù)學上冊 【單元闖關(guān)測】第六章 統(tǒng)計表和條形統(tǒng)計圖(二)蘇教版單元測試題 帶解析(蘇教版)
- 借工合同范本
- 2024年福建福州市倉山區(qū)民政局招聘5人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 合肥市2023-2024學年七年級上學期期中語文考試卷
- 相反國課件-大班
- 歷史西漢建立和“文景之治”課件 2024-2025學年統(tǒng)編版七年級歷史上冊
- 中核集團在線測評多少道題
- 語文第13課《紀念白求恩》課件-2024-2025學年統(tǒng)編版語文七年級上冊
- 人教版(2024新版)七年級上冊英語 Unit 1 You and Me 單元測試卷(含答案解析)
- 人教版(2024)七年級上冊生物全冊教學設(shè)計
- 2024-2030年真空鍍膜行業(yè)經(jīng)營效益分析及投資價值戰(zhàn)略規(guī)劃研究報告
- DB11T 2324-2024腳手架鋼板立網(wǎng)防護應用技術(shù)規(guī)程
- 11 對人有禮貌 教學設(shè)計-2024-2025學年道德與法治一年級上冊統(tǒng)編版
評論
0/150
提交評論