2024屆河南省商開二市高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第1頁
2024屆河南省商開二市高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第2頁
2024屆河南省商開二市高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第3頁
2024屆河南省商開二市高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第4頁
2024屆河南省商開二市高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆河南省商開二市高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)點,,若直線與線段沒有交點,則的取值范圍是A. B. C. D.2.是等差數(shù)列的前n項和,如果,那么的值是()A.12 B.24 C.36 D.483.直線x﹣y+2=0與圓x2+(y﹣1)2=4的位置關(guān)系是()A.相交 B.相切 C.相離 D.不確定4.《萊因德紙草書》是世界上最古老的數(shù)學(xué)著作之一,書中有一道這樣的題目:把100個面包分給五個人,使每個人所得成等差數(shù)列,最大的三份之和的是最小的兩份之和,則最小的一份的量是()A. B. C. D.5.設(shè),則的取值范圍是()A. B. C. D.6.已知數(shù)列{an}的前n項和為Sn,Sn=2aA.145 B.114 C.87.如圖,,下列等式中成立的是()A. B.C. D.8.某超市收銀臺排隊等候付款的人數(shù)及其相應(yīng)概率如下:排隊人數(shù)01234概率0.10.160.30.30.10.04則至少有兩人排隊的概率為()A.0.16 B.0.26 C.0.56 D.0.749.為了得到的圖象,只需將的圖象()A.向右平移 B.向左平移 C.向右平移 D.向左平移10.已知是第二象限角,()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在正方體的體對角線與棱所在直線的位置關(guān)系是______.12.如圖,正方體中,的中點為,的中點為,為棱上一點,則異面直線與所成角的大小為__________.13.已知過兩點,的直線的傾斜角是,則______.14.下列命題:①函數(shù)的最小正周期是;②在直角坐標(biāo)系中,點,將向量繞點逆時針旋轉(zhuǎn)得到向量,則點的坐標(biāo)是;③在同一直角坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有兩個公共點;④函數(shù)在上是增函數(shù).其中,正確的命題是________(填正確命題的序號).15.下圖中的幾何體是由兩個有共同底面的圓錐組成.已知兩個圓錐的頂點分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點,B為底面圓周上的動點(不與A重合).下列四個結(jié)論:①三棱錐體積的最大值為;②直線PB與平面PAQ所成角的最大值為;③當(dāng)直線BQ與AP所成角最小時,其正弦值為;④直線BQ與AP所成角的最大值為;其中正確的結(jié)論有___________.(寫出所有正確結(jié)論的編號)16.已知實數(shù)滿足條件,則的最大值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)為奇函數(shù).(1)求實數(shù)的值并證明函數(shù)的單調(diào)性;(2)解關(guān)于不等式:.18.已知函數(shù)的最大值是1,其圖像經(jīng)過點(1)求的解析式;(2)已知且求的值。19.設(shè)數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)若,為數(shù)列位的前項和,求;(3)在(2)的條件下,是否存在自然數(shù),使得對一切恒成立?若存在,求出的值;若不存在,說明理由.20.甲、乙二人參加某體育項目訓(xùn)練,近期的五次測試成績得分情況如圖所示.(1)分別求出兩人得分的平均數(shù)與方差;(2)根據(jù)圖和上面算得的結(jié)果,對兩人的訓(xùn)練成績作出評價.21.如圖1所示,在四邊形中,,且,,.(1)求的面積;(2)若,求的長.圖1圖2

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】直線恒過點且斜率為由圖可知,且故選點睛:本題主要考查了兩條直線的交點坐標(biāo),直線恒過點,直線與線段沒有交點轉(zhuǎn)化為過定點的直線與線段無公共點,作出圖象,由圖求解即可.2、B【解析】

由等差數(shù)列的性質(zhì):若m+n=p+q,則即可得.【詳解】故選B【點睛】本題考查等比數(shù)列前n項和的求解和性質(zhì)的應(yīng)用,是基礎(chǔ)題型,解題中要注意認(rèn)真審題,注意下標(biāo)的變化規(guī)律,合理地進(jìn)行等價轉(zhuǎn)化.3、A【解析】

求得圓心到直線的距離,然后和圓的半徑比較大小,從而判定兩者位置關(guān)系,得到答案.【詳解】由題意,可得圓心到直線的距離為,所以直線與圓相交.故選:A.【點睛】本題主要考查了直線與圓的位置關(guān)系判定,其中解答中熟記直線與圓的位置關(guān)系的判定方法是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.4、D【解析】

由題意可得中間部分的為20個面包,設(shè)最小的一份為,公差為,可得到和的方程,即可求解.【詳解】由題意可得中間的那份為20個面包,設(shè)最小的一份為,公差為,由題意可得,解得,故選D.【點睛】本題主要考查了等差數(shù)列的通項公式及其應(yīng)用,其中根據(jù)題意設(shè)最小的一份為,公差為,列出關(guān)于和的方程是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、B【解析】

由同向不等式的可加性求解即可.【詳解】解:因為,所以,又,,所以,故選:B.【點睛】本題考查了不等式的性質(zhì),屬基礎(chǔ)題.6、B【解析】

由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【詳解】因為Sn=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當(dāng)且僅當(dāng)nm=9mn時取等號,此時∵m,n取整數(shù),∴均值不等式等號條件取不到,則1m驗證可得,當(dāng)m=2,n=4時,1m+9【點睛】本題主要考查等比數(shù)列的定義與通項公式的應(yīng)用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用≥或≤時等號能否同時成立).7、B【解析】

本題首先可結(jié)合向量減法的三角形法則對已知條件中的進(jìn)行化簡,化簡為然后化簡并代入即可得出答案.【詳解】因為,所以,所以,即,故選B.【點睛】本題考查的知識點是平面向量的基本定理,考查向量減法的三角形法則,考查數(shù)形結(jié)合思想與化歸思想,是簡單題.8、D【解析】

利用互斥事件概率計算公式直接求解.【詳解】由某超市收銀臺排隊等候付款的人數(shù)及其相應(yīng)概率表,得:至少有兩人排隊的概率為:.故選:D.【點睛】本題考查概率的求法、互斥事件概率計算公式,考查運算求解能力,是基礎(chǔ)題.9、B【解析】

先利用誘導(dǎo)公式將函數(shù)化成正弦函數(shù)的形式,再根據(jù)平移變換,即可得答案.【詳解】∵,∵,∴只需將的圖象向左平移可得.故選:B.【點睛】本題考查誘導(dǎo)公式、三角函數(shù)的平移變換,考查邏輯推理能力和運算求解能力,求解時注意平移是針對自變量而言的.10、A【解析】cosα=±=±,又∵α是第二象限角,∴cosα=-.二、填空題:本大題共6小題,每小題5分,共30分。11、異面直線【解析】

根據(jù)異面直線的定義,作出圖形,即可求解,得到答案.【詳解】如圖所示,與不在同一平面內(nèi),也不相交,所以體對角線與棱是異面直線.【點睛】本題主要考查了異面直線的概念及其判定,其中熟記異面直線的定義是解答本題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.12、【解析】

根據(jù)題意得到直線MP運動起來構(gòu)成平面,可得到面,進(jìn)而得到結(jié)果.【詳解】取的中點O連接,,根據(jù)題意可得到直線MP是一條動直線,當(dāng)點P變動時直線就構(gòu)成了平面,因為MO均為線段的中點,故得到,四邊形為平行四邊形,面,故得到,又面,進(jìn)而得到.故夾角為.故答案為.【點睛】這個題目考查的是異面直線的夾角的求法;常見方法有:將異面直線平移到同一平面內(nèi),轉(zhuǎn)化為平面角的問題;或者證明線面垂直進(jìn)而得到面面垂直,這種方法適用于異面直線垂直的時候.13、【解析】

由兩點求斜率公式及斜率等于傾斜角的正切值列式求解.【詳解】解:由已知可得:,即,則.故答案為.【點睛】本題考查直線的斜率,考查直線傾斜角與斜率的關(guān)系,是基礎(chǔ)題.14、①②④【解析】

由余弦函數(shù)的周期公式可判斷①;由任意角的三角函數(shù)定義可判斷②;由余弦函數(shù)和一次函數(shù)的圖象可判斷③;由誘導(dǎo)公式和余弦函數(shù)的單調(diào)性可判斷④.【詳解】函數(shù)y=cos(﹣2x)即y=cos2x的最小正周期是π,故①正確;在直角坐標(biāo)系xOy中,點P(a,b),將向量繞點O逆時針旋轉(zhuǎn)90°得到向量,設(shè)a=rcosα,b=rsinα,可得rcos(90°+α)=﹣rsinα=﹣b,rsin(90°+α)=rcosα=a,則點Q的坐標(biāo)是(﹣b,a),故②正確;在同一直角坐標(biāo)系中,函數(shù)y=cosx的圖象和函數(shù)y=x的圖象有一個公共點,故③錯誤;函數(shù)y=sin(x)即y=﹣cosx在[0,π]上是增函數(shù),故④正確.故答案為①②④.【點睛】本題考查余弦函數(shù)的圖象和性質(zhì),主要是周期性和單調(diào)性,考查數(shù)形結(jié)合思想和化簡運算能力,屬于基礎(chǔ)題.15、①③【解析】

由①可知只需求點A到面的最大值對于②,求直線PB與平面PAQ所成角的最大值,可轉(zhuǎn)化為到軸截面距離的最大值問題進(jìn)行求解對于③④,可采用建系法進(jìn)行分析【詳解】選項①如圖所示,當(dāng)時,四棱錐體積最大,選項②中,線PB與平面PAQ所成角最大值的正弦值為,所以選項③和④,如圖所示:以垂直于方向為x軸,方向為y軸,方向為z軸,其中設(shè),.,設(shè)直線BQ與AP所成角為,,當(dāng)時,取到最大值,,此時,由于,,,所以取不到答案選①、③【點睛】幾何體的旋轉(zhuǎn)問題需要結(jié)合動態(tài)圖形和立體幾何基本知識進(jìn)行求解,需找臨界點是正確解題的關(guān)鍵,遇到難以把握的最值問題,可采用建系法進(jìn)行求解.16、8【解析】

畫出滿足約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】實數(shù),滿足條件的可行域如下圖所示:將目標(biāo)函數(shù)變形為:,則要求的最大值,即使直線的截距最大,由圖可知,直線過點時截距最大,,故答案為:8.【點睛】本題考查線性規(guī)劃的簡單應(yīng)用,解題關(guān)鍵是明確目標(biāo)函數(shù)的幾何意義.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2,證明見解析(2)【解析】

(1)由函數(shù)為奇函數(shù),得,化簡得,所以,.再轉(zhuǎn)化函數(shù)為,由定義法證明單調(diào)性.(2)將可化為,構(gòu)造函數(shù),再由在上是單調(diào)遞增函數(shù)求解.【詳解】(1)根據(jù)題意,因為函數(shù)為奇函數(shù),所以,即,即,即,化簡得,所以.所以,證明:任取且,則因為,所以,,,,所以∴,所以在上單調(diào)遞增;(2)可化為,設(shè)函數(shù),由(1)可知,在上也是單調(diào)遞增,所以,即,解得.【點睛】本題主要考查了函數(shù)的單調(diào)性和奇偶性的應(yīng)用,還考查了運算求解的能力,屬于中檔題.18、(1)(2)【解析】本題(1)屬于基礎(chǔ)問題,根據(jù)題意首先可求得A,再將點M代入即可求得解析式;對于(2)可先將函數(shù)f(x)的解析式化簡,再帶入,利用兩角差的余弦公式可求解;(1)依題意知A=1,又圖像經(jīng)過點M∴,再由得即因此;(2),且,;19、(1)(2)(3)【解析】

(1)根據(jù)題干可推導(dǎo)得到,進(jìn)而得到數(shù)列是以為首項,為公比的等比數(shù)列,由等比數(shù)列的通項公式得到結(jié)果;(2)由錯位相減的方法得到結(jié)果;(3)根據(jù)第二問得到:,數(shù)列單調(diào)遞增,由數(shù)列的單調(diào)性得到數(shù)列范圍.【詳解】(1)由,令,則,又,所以.當(dāng)時,由可得,,即,所以是以為首項,為公比的等比數(shù)列,于是.(2)∴∴從而.(3)由(2)知,∴數(shù)列單調(diào)遞增,∴,又,∴要恒成立,則,解得,又,故.【點睛】這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知和的關(guān)系,求表達(dá)式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等。20、(1)答案見解析;(2)答案見解析.【解析】試題分析:(1)由圖象可得甲、乙兩人五次測試的成績分別為,甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.根據(jù)平均數(shù),方差的公式代入計算得解(2)由可知乙的成績較穩(wěn)定.從折線圖看,甲的成績基本呈上升狀態(tài),而乙的成績上下波動,可知甲的成績在不斷提高,而乙的成績則無明顯提高.試題解析:(1)由圖象可得甲、乙兩人五次測試的成績分別為甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.=13,=13,×[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論