山東泰安肥城市2023-2024學(xué)年數(shù)學(xué)高一下期末檢測試題含解析_第1頁
山東泰安肥城市2023-2024學(xué)年數(shù)學(xué)高一下期末檢測試題含解析_第2頁
山東泰安肥城市2023-2024學(xué)年數(shù)學(xué)高一下期末檢測試題含解析_第3頁
山東泰安肥城市2023-2024學(xué)年數(shù)學(xué)高一下期末檢測試題含解析_第4頁
山東泰安肥城市2023-2024學(xué)年數(shù)學(xué)高一下期末檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東泰安肥城市2023-2024學(xué)年數(shù)學(xué)高一下期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)在區(qū)間上是增函數(shù),且在區(qū)間上恰好取得一次最大值為2,則的取值范圍是()A. B. C. D.2.將某選手的7個(gè)得分去掉1個(gè)最高分,去掉1個(gè)最低分,5個(gè)剩余分?jǐn)?shù)的平均分為21,現(xiàn)場作的7個(gè)分?jǐn)?shù)的莖葉圖后來有1個(gè)數(shù)據(jù)模糊,無法辨認(rèn),在圖中以x表示,則5個(gè)剩余分?jǐn)?shù)的方差為()A. B. C.36 D.3.等差數(shù)列中,,且,且,是其前項(xiàng)和,則下列判斷正確的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于4.已知數(shù)列的前項(xiàng)和為,滿足,則通項(xiàng)公式等于().A. B. C. D.5.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A.3 B.4 C.5 D.66.在面積為S的△ABC的邊AB上任取一點(diǎn)P,則△PBC的面積大于的概率是()A. B. C. D.7.已知是奇函數(shù),且.若,則()A.1 B.2 C.3 D.48.在區(qū)間上隨機(jī)選取一個(gè)數(shù),則的概率為()A. B. C. D.9.在三棱柱中,各棱長相等,側(cè)棱垂直于底面,點(diǎn)是側(cè)面的中心,則與平面所成角的大小是()A. B. C. D.10.《張丘建算經(jīng)》中女子織布問題為:某女子善于織布,一天比一天織得快,且從第2天開始,每天比前一天多織相同量的布,已知第一天織5尺布,一月(按30天計(jì))共織390尺布,則從第2天起每天比前一天多織()尺布.A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期為.12.已知等差數(shù)列,,,,則______.13.在中,內(nèi)角,,的對邊分別為,,.若,,成等比數(shù)列,且,則________.14.若,則函數(shù)的最小值是_________.15.在中,給出如下命題:①是所在平面內(nèi)一定點(diǎn),且滿足,則是的垂心;②是所在平面內(nèi)一定點(diǎn),動(dòng)點(diǎn)滿足,,則動(dòng)點(diǎn)一定過的重心;③是內(nèi)一定點(diǎn),且,則;④若且,則為等邊三角形,其中正確的命題為_____(將所有正確命題的序號都填上)16.在等差數(shù)列中,若,且它的前n項(xiàng)和有最大值,則當(dāng)取得最小正值時(shí),n的值為_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角的對邊分別為,且.(1)求角;(2)若,,求的值.18.設(shè)的內(nèi)角所對應(yīng)的邊長分別是,且.(Ⅰ)當(dāng)時(shí),求的值;(Ⅱ)當(dāng)?shù)拿娣e為時(shí),求的值.19.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應(yīng)的x的取值.20.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并證明:數(shù)列{an+1}為等比數(shù)列;(1)設(shè)bn=log1(a3n+1),數(shù)列{}的前n項(xiàng)和為Tn,求證:1≤18Tn<1.21.某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試的平均分;(3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任取個(gè),求至多有人在分?jǐn)?shù)段內(nèi)的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

化簡函數(shù)為正弦型函數(shù),根據(jù)題意,利用正弦函數(shù)的圖象與性質(zhì)求得的取值范圍.【詳解】解:函數(shù)則函數(shù)在上是含原點(diǎn)的遞增區(qū)間;又因?yàn)楹瘮?shù)在區(qū)間上是單調(diào)遞增,則,得不等式組又因?yàn)?,所以解?又因?yàn)楹瘮?shù)在區(qū)間上恰好取得一次最大值為2,可得,所以,綜上所述,可得.故選:D.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖像和性質(zhì)應(yīng)用問題,也考查了三角函數(shù)的靈活應(yīng)用,屬于中檔題.2、B【解析】

由剩余5個(gè)分?jǐn)?shù)的平均數(shù)為21,據(jù)莖葉圖列方程求出x=4,由此能求出5個(gè)剩余分?jǐn)?shù)的方差.【詳解】∵將某選手的7個(gè)得分去掉1個(gè)最高分,去掉1個(gè)最低分,剩余5個(gè)分?jǐn)?shù)的平均數(shù)為21,∴由莖葉圖得:得x=4,∴5個(gè)分?jǐn)?shù)的方差為:S2故選B【點(diǎn)睛】本題考查方差的求法,考查平均數(shù)、方差、莖葉圖基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是基礎(chǔ)題.3、C【解析】

由,且可得,,,,結(jié)合等差數(shù)列的求和公式即等差數(shù)列的性質(zhì)即可判斷.【詳解】,且,,數(shù)列的前項(xiàng)都是負(fù)數(shù),,,,由等差數(shù)列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故選:C.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和符號的判斷,解題時(shí)要充分結(jié)合等差數(shù)列下標(biāo)和的性質(zhì)以及等差數(shù)列求和公式進(jìn)行計(jì)算,考查分析問題和解決問題的能力,屬于中等題.4、C【解析】

代入求得;根據(jù)可證得數(shù)列為等比數(shù)列,從而利用等比數(shù)列通項(xiàng)公式求得結(jié)果.【詳解】當(dāng)時(shí),當(dāng)且時(shí),則,即數(shù)列是以為首項(xiàng),為公比的等比數(shù)列本題正確選項(xiàng):【點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式的求解,關(guān)鍵是能夠利用得到數(shù)列為等比數(shù)列,屬于常規(guī)題型.5、C【解析】

由又,可得公差,從而可得結(jié)果.【詳解】是等差數(shù)列又,∴公差,,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式與求和公式的應(yīng)用,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,屬于中檔題.6、C【解析】

記事件,基本事件是線段的長度,如下圖所示,作于,作于,根據(jù)三角形的面積關(guān)系得,再由三角形的相似性得,可得事件的幾何度量為線段的長度,可求得其概率.【詳解】記事件,基本事件是線段的長度,如下圖所示,作于,作于,因?yàn)?,則有;化簡得:,因?yàn)椋瑒t由三角形的相似性得,所以,事件的幾何度量為線段的長度,因?yàn)?,所以的面積大于的概率.故選:C【點(diǎn)睛】本題考查幾何概型,屬于基礎(chǔ)題.常有以下一些方面需考慮幾何概型,求解時(shí)需注意一些要點(diǎn).(1)當(dāng)試驗(yàn)的結(jié)果構(gòu)成的區(qū)域?yàn)殚L度、面積、體積等時(shí),應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時(shí),關(guān)鍵是試驗(yàn)的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時(shí)需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域。(3)幾何概型有兩個(gè)特點(diǎn):一是無限性,二是等可能性.基本事件可以抽象為點(diǎn),盡管這些點(diǎn)是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用"比例解法求解幾何概型的概率.7、C【解析】

根據(jù)題意,由奇函數(shù)的性質(zhì)可得,變形可得:,結(jié)合題意計(jì)算可得的值,進(jìn)而計(jì)算可得答案.【詳解】根據(jù)題意,是奇函數(shù),則,變形可得:,則有,即,又由,則,,故選:.【點(diǎn)睛】本題考查函數(shù)奇偶性的性質(zhì)以及應(yīng)用,涉及誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.8、C【解析】

根據(jù)幾何概型概率公式直接求解可得結(jié)果.【詳解】由幾何概型概率公式可知,所求概率本題正確選項(xiàng):【點(diǎn)睛】本題考查幾何概型中的長度型概率問題的求解,屬于基礎(chǔ)題.9、C【解析】

如圖,取中點(diǎn),則平面,故,因此與平面所成角即為,設(shè),則,,即,故,故選C.10、B【解析】由題可知每天織的布的多少構(gòu)成等差數(shù)列,其中第一天為首項(xiàng),一月按30天計(jì)可得,從第2天起每天比前一天多織的即為公差.又,解得.故本題選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:,所以函數(shù)的周期等于考點(diǎn):1.二倍角降冪公式;2.三角函數(shù)的周期.12、【解析】

利用等差中項(xiàng)的基本性質(zhì)求得,,并利用等差中項(xiàng)的性質(zhì)求出的值,由此可得出的值.【詳解】由等差中項(xiàng)的性質(zhì)可得,同理,由于、、成等差數(shù)列,所以,則,因此,.故答案為:.【點(diǎn)睛】本題考查利用等差中項(xiàng)的性質(zhì)求值,考查計(jì)算能力,屬于基礎(chǔ)題.13、【解析】

A,B,C是三角形內(nèi)角,那么,代入等式中,進(jìn)行化簡可得角A,C的關(guān)系,再由,,成等比數(shù)列,根據(jù)正弦定理,將邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,兩式相減可得關(guān)于的方程,解方程即得.【詳解】因?yàn)?,所以,所?因?yàn)?,,成等比?shù)列,所以,所以,則,整理得,解得.【點(diǎn)睛】本題考查正弦定理和等比數(shù)列運(yùn)用,有一定的綜合性.14、【解析】

利用基本不等式可求得函數(shù)的最小值.【詳解】,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號成立,因此,當(dāng)時(shí),函數(shù)的最小值是.故答案為:.【點(diǎn)睛】本題考查利用基本不等式求函數(shù)的最值,考查計(jì)算能力,屬于基礎(chǔ)題.15、①②④.【解析】

①:運(yùn)用已知的式子進(jìn)行合理的變形,可以得到,進(jìn)而得到,再次運(yùn)用等式同樣可以得到,,這樣可以證明出是的垂心;②:運(yùn)用平面向量的減法的運(yùn)算法則、加法的幾何意義,結(jié)合平面向量共線定理,可以證明本命題是真命題;③:運(yùn)用平面向量的加法的幾何意義以及平面向量共線定理,結(jié)合面積公式,可證明出本結(jié)論是錯(cuò)誤的;④:運(yùn)用平面向量的加法幾何意義和平面向量的數(shù)量積的定義,可以證明出本結(jié)論是正確的.【詳解】①:,同理可得:,,所以本命題是真命題;②:,設(shè)的中點(diǎn)為,所以有,因此動(dòng)點(diǎn)一定過的重心,故本命題是真命題;③:由,可得設(shè)的中點(diǎn)為,,,故本命題是假命題;④:由可知角的平分線垂直于底邊,故是等腰三角形,由可知:,所以是等邊三角形,故本命題是真命題,因此正確的命題為①②④.【點(diǎn)睛】本題考查了平面向量的加法的幾何意義和平面向量數(shù)量積的運(yùn)算,考查了數(shù)形結(jié)合思想.16、.【解析】試題分析:因?yàn)榈炔顢?shù)列前項(xiàng)和有最大值,所以公差為負(fù),所以由得,所以,=,所以當(dāng)時(shí),取到最小正值.考點(diǎn):1、等差數(shù)列性質(zhì);2、等差數(shù)列的前項(xiàng)和公式.【方法點(diǎn)睛】求等差數(shù)列前項(xiàng)和的最值常用的方法有:(1)先求,再利用或求出其正負(fù)轉(zhuǎn)折項(xiàng),最后利用單調(diào)性確定最值;(2)利用性質(zhì)求出其正負(fù)轉(zhuǎn)折項(xiàng),便可求得前項(xiàng)和的最值;(3)利用等差數(shù)列的前項(xiàng)和(為常數(shù))為二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)求最值.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】

(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【詳解】(1)由題意知,由正弦定理可得,因?yàn)?,則,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中解答中熟記三角形的正弦、余弦定理,準(zhǔn)確計(jì)算是解答的掛念,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由得,再利用正弦定理即可求出(Ⅱ)由可得,再利用余弦定理即可求出.【詳解】(Ⅰ)∵∴,由正弦定理可知:,∴(Ⅱ)∵∴由余弦定理得:∴,即則:故:【點(diǎn)睛】本題主要考查了正弦定理與余弦定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.19、(Ⅰ);(Ⅱ)時(shí),取得最大值2;時(shí),取得最小值.【解析】

(Ⅰ)利用二倍角和兩角和與差以及輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,利用三角函數(shù)的周期公式求函數(shù)的最小正周期.(Ⅱ)利用x∈[,]上時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值.【詳解】(Ⅰ)因?yàn)楹瘮?shù)f(x)=4cosxsin(x)1.化簡可得:f(x)=4cosxsinxcos4cos2xsin1sin2x+2cos2x1sin2x+cos2x=2sin(2x)所以的最小正周期為.(Ⅱ)因?yàn)?,所以.?dāng),即時(shí),f(x)取得最大值2;當(dāng),即時(shí),f(x)取得最小值-1.【點(diǎn)睛】本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵,屬于基礎(chǔ)題.20、(1)見解析;(1)見解析【解析】

(1)可令求得的值;再由數(shù)列的遞推式,作差可得,可得數(shù)列為首項(xiàng)為1,公比為1的等比數(shù)列;(1)由(1)求得,,再由數(shù)列的裂項(xiàng)相消求和,可得,再由不等式的性質(zhì)即可得證.【詳解】(1)當(dāng)時(shí),,即,∴,當(dāng)時(shí),,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴數(shù)列是首項(xiàng)為,公比為1的等比數(shù)列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【點(diǎn)睛】本題主要考查了數(shù)列的遞推式的運(yùn)用,考查等比數(shù)列的定義和通項(xiàng)公式、求和公式的運(yùn)用,考查數(shù)列的裂項(xiàng)相消求和,化簡運(yùn)算能力,屬于中檔題.21、(1)0.3,直方圖見解析;(2)121;(3).【解析】

(1)頻率分布直方圖中,小矩形的面積等于這一組的頻率,而頻率的和等于1,可求出分?jǐn)?shù)在內(nèi)的頻率,即可求出矩形的高,畫出圖象即可;(2)同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,將中點(diǎn)值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分;(3)先計(jì)算、分?jǐn)?shù)段的人數(shù),然后按照比例進(jìn)行抽取,設(shè)從樣本中任取2人,至多有1人在分?jǐn)?shù)段為事件,然后列出基本事件空間包含的基本事件,以及事件包含的基本事件,最后將包含事件的個(gè)數(shù)求出題目比值即可.【詳解】(1)分?jǐn)?shù)在[120,130)內(nèi)的頻率為:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3,,補(bǔ)全后的直方圖如下:(2)平均分為:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由題意,[110,120)分?jǐn)?shù)段的人數(shù)為:60×0.15=9人,[120,130)分?jǐn)?shù)段的人數(shù)為:60×0.3=18人.∵用分層抽樣的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論