泰安市重點(diǎn)中學(xué)2023-2024學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
泰安市重點(diǎn)中學(xué)2023-2024學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
泰安市重點(diǎn)中學(xué)2023-2024學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
泰安市重點(diǎn)中學(xué)2023-2024學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
泰安市重點(diǎn)中學(xué)2023-2024學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

泰安市重點(diǎn)中學(xué)2023-2024學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的大致圖像為()A. B.C. D.2.己知,,,則()A. B. C. D.3.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,且橢圓與拋物線(xiàn)的兩個(gè)交點(diǎn)連線(xiàn)正好過(guò)點(diǎn),則橢圓的離心率為()A. B. C. D.4.若函數(shù)的圖象經(jīng)過(guò)點(diǎn),則函數(shù)圖象的一條對(duì)稱(chēng)軸的方程可以為()A. B. C. D.5.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.6.已知,是橢圓與雙曲線(xiàn)的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線(xiàn)的離心率為,若,則的最小值為()A. B. C.8 D.67.已知拋物線(xiàn)上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線(xiàn)焦點(diǎn)的距離為()A.2 B.3 C.4 D.58.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件9.3本不同的語(yǔ)文書(shū),2本不同的數(shù)學(xué)書(shū),從中任意取出2本,取出的書(shū)恰好都是數(shù)學(xué)書(shū)的概率是()A. B. C. D.10.已知l,m是兩條不同的直線(xiàn),m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件11.已知,則“直線(xiàn)與直線(xiàn)垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線(xiàn)在點(diǎn),處的切線(xiàn)重合,則實(shí)數(shù)的最小值是()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線(xiàn)的焦點(diǎn)為,其準(zhǔn)線(xiàn)與坐標(biāo)軸交于點(diǎn),過(guò)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),若,則直線(xiàn)的斜率________.14.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.15.已知等邊三角形的邊長(zhǎng)為1.,點(diǎn)、分別為線(xiàn)段、上的動(dòng)點(diǎn),則取值的集合為_(kāi)_________.16.設(shè)實(shí)數(shù),滿(mǎn)足,則的最大值是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對(duì)?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+18.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.19.(12分)已知橢圓()的離心率為,且經(jīng)過(guò)點(diǎn).(1)求橢圓的方程;(2)過(guò)點(diǎn)作直線(xiàn)與橢圓交于不同的兩點(diǎn),,試問(wèn)在軸上是否存在定點(diǎn)使得直線(xiàn)與直線(xiàn)恰關(guān)于軸對(duì)稱(chēng)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.20.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明:.21.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.22.(10分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對(duì)稱(chēng)軸方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

通過(guò)取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)?,?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.2、B【解析】

先將三個(gè)數(shù)通過(guò)指數(shù),對(duì)數(shù)運(yùn)算變形,再判斷.【詳解】因?yàn)?,,所以,故選:B.【點(diǎn)睛】本題主要考查指數(shù)、對(duì)數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.3、B【解析】

根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、拋物線(xiàn)的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題4、B【解析】

由點(diǎn)求得的值,化簡(jiǎn)解析式,根據(jù)三角函數(shù)對(duì)稱(chēng)軸的求法,求得的對(duì)稱(chēng)軸,由此確定正確選項(xiàng).【詳解】由題可知.所以令,得令,得故選:B【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)圖象上點(diǎn)的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對(duì)稱(chēng)軸的求法,屬于中檔題.5、B【解析】

設(shè),則,,由B,P,D三點(diǎn)共線(xiàn),C,P,E三點(diǎn)共線(xiàn),可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線(xiàn),C,P,E三點(diǎn)共線(xiàn),所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線(xiàn)定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.6、C【解析】

由橢圓的定義以及雙曲線(xiàn)的定義、離心率公式化簡(jiǎn),結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線(xiàn)的半實(shí)軸長(zhǎng)為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線(xiàn)的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號(hào).故選:C.【點(diǎn)睛】本題主要考查了橢圓的定義以及雙曲線(xiàn)的定義、離心率公式,屬于中等題.7、D【解析】試題分析:拋物線(xiàn)焦點(diǎn)在軸上,開(kāi)口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線(xiàn)方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線(xiàn)準(zhǔn)線(xiàn)的距離為,因?yàn)閽佄锞€(xiàn)上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線(xiàn)的距離,所以點(diǎn)A與拋物線(xiàn)焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線(xiàn)定義和拋物線(xiàn)上點(diǎn)的性質(zhì)拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線(xiàn)的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.8、B【解析】

由數(shù)量積的定義可得,為實(shí)數(shù),則由可得,根據(jù)共線(xiàn)的性質(zhì),可判斷;再根據(jù)判斷,由等價(jià)法即可判斷兩命題的關(guān)系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點(diǎn)睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.9、D【解析】

把5本書(shū)編號(hào),然后用列舉法列出所有基本事件.計(jì)數(shù)后可求得概率.【詳解】3本不同的語(yǔ)文書(shū)編號(hào)為,2本不同的數(shù)學(xué)書(shū)編號(hào)為,從中任意取出2本,所有的可能為:共10個(gè),恰好都是數(shù)學(xué)書(shū)的只有一種,∴所求概率為.故選:D.【點(diǎn)睛】本題考查古典概型,解題方法是列舉法,用列舉法寫(xiě)出所有的基本事件,然后計(jì)數(shù)計(jì)算概率.10、A【解析】

根據(jù)充分條件和必要條件的定義,結(jié)合線(xiàn)面垂直的性質(zhì)進(jìn)行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線(xiàn)面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題11、B【解析】

由兩直線(xiàn)垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【詳解】由題意,“直線(xiàn)與直線(xiàn)垂直”則,解得或,所以“直線(xiàn)與直線(xiàn)垂直”是“”的必要不充分條件,故選B.【點(diǎn)睛】本題主要考查了兩直線(xiàn)的位置關(guān)系,及必要不充分條件的判定,其中解答中利用兩直線(xiàn)的位置關(guān)系求得的值,同時(shí)熟記充要條件的判定方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.12、B【解析】

先根據(jù)導(dǎo)數(shù)的幾何意義寫(xiě)出在兩點(diǎn)處的切線(xiàn)方程,再利用兩直線(xiàn)斜率相等且縱截距相等,列出關(guān)系樹(shù),從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時(shí),,則;當(dāng)時(shí),則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時(shí),,不符合題意,故.則在處的切線(xiàn)方程為;在處的切線(xiàn)方程為.由兩切線(xiàn)重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時(shí),的最大值為.則在上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類(lèi)與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出拋物線(xiàn)焦點(diǎn)坐標(biāo),由,結(jié)合向量的坐標(biāo)運(yùn)算得,直線(xiàn)方程為,代入拋物線(xiàn)方程后應(yīng)用韋達(dá)定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)相交,考查向量的線(xiàn)性運(yùn)算的坐標(biāo)表示.直線(xiàn)方程與拋物線(xiàn)方程聯(lián)立后消元,應(yīng)用韋達(dá)定理是解決直線(xiàn)與拋物線(xiàn)相交問(wèn)題的常用方法.14、【解析】

先由三視圖在長(zhǎng)方體中將其還原成直觀圖,再利用球的直徑是長(zhǎng)方體體對(duì)角線(xiàn)即可解決.【詳解】由三視圖知該幾何體是一個(gè)三棱錐,如圖所示長(zhǎng)方體對(duì)角線(xiàn)長(zhǎng)為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【點(diǎn)睛】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計(jì)算能力,是一道基礎(chǔ)題.15、【解析】

根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點(diǎn)的坐標(biāo),依題意求出,,,的表達(dá)式,再進(jìn)行數(shù)量積的運(yùn)算,最后求和即可得出結(jié)果.【詳解】解:以的中點(diǎn)為坐標(biāo)原點(diǎn),所在直線(xiàn)為軸,線(xiàn)段的垂直平分線(xiàn)為軸建立平面直角坐標(biāo)系,如圖所示,則,,,,則,,,設(shè),,,即點(diǎn)的坐標(biāo)為,則,,,所以故答案為:【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示和線(xiàn)性運(yùn)算,以及平面向量基本定理和數(shù)量積的運(yùn)算,是中檔題.16、1【解析】

根據(jù)目標(biāo)函數(shù)的解析式形式,分析目標(biāo)函數(shù)的幾何意義,然后判斷求出目標(biāo)函數(shù)取得最優(yōu)解的點(diǎn)的坐標(biāo),即可求解.【詳解】作出實(shí)數(shù),滿(mǎn)足表示的平面區(qū)域,如圖所示:由可得,則表示直線(xiàn)在軸上的截距,截距越小,越大.由可得,此時(shí)最大為1,故答案為:1.【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】

(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類(lèi)討論法去掉絕對(duì)值求出不等式的解集即可;(Ⅱ)由題意把問(wèn)題轉(zhuǎn)化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當(dāng)x∈(-∞,a]時(shí),|x-2a|-|x-a|≤-a,[f(x)]max因?yàn)閨y+2020|+|y-a|≥|a+2020|,所以當(dāng)(y+2020)(y-a)≤0時(shí),[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結(jié)合a<0,所以a的取值范圍是[-1010,0).【點(diǎn)睛】本題考查了絕對(duì)值不等式的求解問(wèn)題,含有絕對(duì)值的不等式恒成立應(yīng)用問(wèn)題,以及絕對(duì)值三角不等式的應(yīng)用,考查了分類(lèi)討論思想,是中檔題.含有絕對(duì)值的不等式恒成立應(yīng)用問(wèn)題,關(guān)鍵是等價(jià)轉(zhuǎn)化為最值問(wèn)題,再通過(guò)絕對(duì)值三角不等式求解最值,從而建立不等關(guān)系,求出參數(shù)范圍.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)把代入,可得,令,求出其在上的值域,利用對(duì)數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,此時(shí)函數(shù)的定義域?yàn)?因?yàn)楹瘮?shù)的最小值為.最大值為,故函數(shù)在上的值域?yàn)椋唬á颍┮驗(yàn)楹瘮?shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實(shí)數(shù)的取值范圍.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)的單調(diào)性求值域、利用對(duì)數(shù)型函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質(zhì),屬于中檔題.19、(1)(2)見(jiàn)解析【解析】

(1)由題得a,b,c的方程組求解即可(2)直線(xiàn)與直線(xiàn)恰關(guān)于軸對(duì)稱(chēng),等價(jià)于的斜率互為相反數(shù),即,整理.設(shè)直線(xiàn)的方程為,與橢圓聯(lián)立,將韋達(dá)定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點(diǎn),滿(mǎn)足直線(xiàn)與直線(xiàn)恰關(guān)于軸對(duì)稱(chēng).設(shè)直線(xiàn)的方程為,與橢圓聯(lián)立,整理得,.設(shè),,定點(diǎn).(依題意則由韋達(dá)定理可得,,.直線(xiàn)與直線(xiàn)恰關(guān)于軸對(duì)稱(chēng),等價(jià)于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當(dāng),即時(shí),直線(xiàn)與直線(xiàn)恰關(guān)于軸對(duì)稱(chēng)成立.特別地,當(dāng)直線(xiàn)為軸時(shí),也符合題意.綜上所述,存在軸上的定點(diǎn),滿(mǎn)足直線(xiàn)與直線(xiàn)恰關(guān)于軸對(duì)稱(chēng).【點(diǎn)睛】本題考查橢圓方程,直線(xiàn)與橢圓位置關(guān)系,熟記橢圓方程簡(jiǎn)單性質(zhì),熟練轉(zhuǎn)化題目條件,準(zhǔn)確計(jì)算是關(guān)鍵,是中檔題.20、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】

(1)求導(dǎo)得,分類(lèi)討論和,利用導(dǎo)數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導(dǎo)數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當(dāng)時(shí),,此時(shí)在上遞增;當(dāng)時(shí),由,解得,若,則,若,,此時(shí)在遞增,在上遞減.(2)由

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論