浙江諸暨市牌頭中學2023-2024學年高考數學考前最后一卷預測卷含解析_第1頁
浙江諸暨市牌頭中學2023-2024學年高考數學考前最后一卷預測卷含解析_第2頁
浙江諸暨市牌頭中學2023-2024學年高考數學考前最后一卷預測卷含解析_第3頁
浙江諸暨市牌頭中學2023-2024學年高考數學考前最后一卷預測卷含解析_第4頁
浙江諸暨市牌頭中學2023-2024學年高考數學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江諸暨市牌頭中學2023-2024學年高考數學考前最后一卷預測卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某人用隨機模擬的方法估計無理數的值,做法如下:首先在平面直角坐標系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內投入粒豆子,并統計出這些豆子在曲線上方的有粒,則無理數的估計值是()A. B. C. D.2.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.3.定義:表示不等式的解集中的整數解之和.若,,,則實數的取值范圍是A. B. C. D.4.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.5.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.6.已知命題,,則是()A., B.,.C., D.,.7.一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是()A. B. C. D.8.若實數滿足不等式組則的最小值等于()A. B. C. D.9.已知函數,則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱10.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.411.設(是虛數單位),則()A. B.1 C.2 D.12.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數為________.14.《九章算術》是中國古代的數學名著,其中《方田》一章給出了弧田面積的計算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.15.在的二項展開式中,所有項的系數的和為________16.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務,每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當甲、乙兩人都參加時,他們參加社區(qū)服務的日期不相鄰,那么不同的安排種數為______________.(用數字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線C的參數方程為(為參數).以原點為極點,x軸的非負半軸為極軸,建立極坐標系.(1)求曲線C的極坐標方程;(2)直線(t為參數)與曲線C交于A,B兩點,求最大時,直線l的直角坐標方程.18.(12分)已知△ABC三內角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.19.(12分)在平面直角坐標系中,曲線的參數方程是(為參數),以原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標方程;(Ⅱ)已知直線與曲線交于,兩點,與軸交于點,求.20.(12分)已知函數.(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.21.(12分)隨著時代的發(fā)展,A城市的競爭力、影響力日益卓著,這座創(chuàng)新引領型城市有望踏上向“全球城市”發(fā)起“沖擊”的新征程.A城市的活力與包容無不吸引著無數懷揣夢想的年輕人前來發(fā)展,目前A城市的常住人口大約為1300萬.近日,某報社記者作了有關“你來A城市發(fā)展的理由”的調查問卷,參與調查的對象年齡層次在25~44歲之間.收集到的相關數據如下:來A城市發(fā)展的理由人數合計自然環(huán)境1.森林城市,空氣清新2003002.降水充足,氣候怡人100人文環(huán)境3.城市服務到位1507004.創(chuàng)業(yè)氛圍好3005.開放且包容250合計10001000(1)根據以上數據,預測400萬25~44歲年齡的人中,選擇“創(chuàng)業(yè)氛圍好”來A城市發(fā)展的有多少人;(2)從所抽取選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中,利用分層抽樣的方法抽取6人,從這6人中再選取3人發(fā)放紀念品.求選出的3人中至少有2人選擇“森林城市,空氣清新”的概率;(3)在選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中有100名男性;在選擇“人文環(huán)境”作為來A城市發(fā)展的理由的700人中有400名男性;請?zhí)顚懴旅媪新摫恚⑴袛嗍欠裼械陌盐照J為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關?自然環(huán)境人文環(huán)境合計男女合計附:,.P()0.0500.0100.001k3.8416.63510.82822.(10分)已知數列和滿足:.(1)求證:數列為等比數列;(2)求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

利用定積分計算出矩形中位于曲線上方區(qū)域的面積,進而利用幾何概型的概率公式得出關于的等式,解出的表達式即可.【詳解】在函數的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點睛】本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應用,同時也考查了利用定積分計算平面區(qū)域的面積,考查計算能力,屬于中等題.2、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.3、D【解析】

由題意得,表示不等式的解集中整數解之和為6.當時,數形結合(如圖)得的解集中的整數解有無數多個,解集中的整數解之和一定大于6.當時,,數形結合(如圖),由解得.在內有3個整數解,為1,2,3,滿足,所以符合題意.當時,作出函數和的圖象,如圖所示.若,即的整數解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數的取值范圍是.故選D.4、A【解析】

根據橢圓與雙曲線離心率的表示形式,結合和的離心率之積為,即可得的關系,進而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.【點睛】本題考查了橢圓與雙曲線簡單幾何性質應用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎題.5、D【解析】

根據雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.6、B【解析】

根據全稱命題的否定為特稱命題,得到結果.【詳解】根據全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎題.7、D【解析】

首先判斷循環(huán)結構類型,得到判斷框內的語句性質,然后對循環(huán)體進行分析,找出循環(huán)規(guī)律,判斷輸出結果與循環(huán)次數以及的關系,最終得出選項.【詳解】經判斷此循環(huán)為“直到型”結構,判斷框為跳出循環(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據判斷框內為跳出循環(huán)的語句,,故選D.【點睛】題主要考查程序框圖的循環(huán)結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結構還是循環(huán)結構;(3)注意區(qū)分當型循環(huán)結構和直到型循環(huán)結構;(4)處理循環(huán)結構的問題時一定要正確控制循環(huán)次數;(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.8、A【解析】

首先畫出可行域,利用目標函數的幾何意義求的最小值.【詳解】解:作出實數,滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以.故選:A.【點睛】本題考查了簡單線性規(guī)劃問題,求目標函數的最值先畫出可行域,利用幾何意義求值,屬于中檔題.9、D【解析】

先將函數化為,再由三角函數的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數對稱軸可得:解得:,當,,故C正確;對于D,正弦函數對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數的性質,熟記三角函數基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.10、A【解析】

由傾斜角的余弦值,求出正切值,即的關系,求出雙曲線的離心率.【詳解】解:設雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題11、A【解析】

先利用復數代數形式的四則運算法則求出,即可根據復數的模計算公式求出.【詳解】∵,∴.故選:A.【點睛】本題主要考查復數代數形式的四則運算法則的應用,以及復數的模計算公式的應用,屬于容易題.12、D【解析】

先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數,再得到甲第一個到、丙第三個到的基本事件的種數,利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D【點睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、80.【解析】

只需找到展開式中的項的系數即可.【詳解】展開式的通項為,令,則,故的展開式中的系數為80.故答案為:80.【點睛】本題考查二項式定理的應用,涉及到展開式中的特殊項系數,考查學生的計算能力,是一道容易題.14、612π﹣9【解析】

過作,交于,先求得圓心角的弧度數,然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據圓的幾何性質可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點睛】本小題主要考查弓形弦長和弓形面積的計算,考查中國古代數學文化,屬于中檔題.15、1【解析】

設,令,的值即為所有項的系數之和?!驹斀狻吭O,令,所有項的系數的和為?!军c睛】本題主要考查二項式展開式所有項的系數的和的求法─賦值法。一般地,對于,展開式各項系數之和為,注意與“二項式系數之和”區(qū)分。16、5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數為。填5040.【點睛】利用排列組合計數時,關鍵是正確進行分類和分步,分類時要注意不重不漏.在本題中,甲與乙是兩個特殊元素,對于特殊元素“優(yōu)先法”,所以有了分類。本題還涉及不相鄰問題,采用“插空法”。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用消去參數,得到曲線的普通方程,再將,代入普通方程,即可求出結論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數方程(為參數),可得曲線C的普通方程為,因為,所以曲線C的極坐標方程為,即.(2)因為直線(t為參數)表示的是過點的直線,曲線C的普通方程為,所以當最大時,直線l經過圓心.直線l的斜率為,方程為,所以直線l的直角坐標方程為.【點睛】本題考查參數方程與普通方程互化、直角坐標方程與極坐標方程互化、直線與曲線的位置關系,考查化歸和轉化思想,屬于中檔題.18、(1);(2)或.【解析】

(1)利用正弦定理對已知代數式化簡,根據余弦定理求解余弦值;(2)根據余弦定理求出b=1或b=3,結合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點睛】此題考查利用正余弦定理求解三角形,關鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據面積公式求解面積.19、(1)(x-1)2+y2=4,直線l的直角坐標方程為x-y-2=0;(2)3.【解析】

(1)消參得到曲線的普通方程,利用極坐標和直角坐標方程的互化公式求得直線的直角坐標方程;(2)先得到直線的參數方程,將直線的參數方程代入到圓的方程,得到關于的一元二次方程,由根與系數的關系、參數的幾何意義進行求解.【詳解】(1)由曲線C的參數方程(α為參數)(α為參數),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數方程為(t為參數).設A,B兩點對應的參數分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數)代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.20、(1)或;(2).【解析】

(1)時,分類討論,去掉絕對值,分類討論解不等式.(2)時,分類討論去絕對值,得到解析式,由函數的單調性可得的最小值,通過恒成立問題,得到關于的不等式,得到的取值范圍.【詳解】(1)因為,所以,所以不等式等價于或或,解得或.所以不等式的解集為或.(2)因為,所以,根據函數的單調性可知函數的最小值為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論