吉林省白山市撫松縣第六中學(xué)2023-2024學(xué)年高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第1頁
吉林省白山市撫松縣第六中學(xué)2023-2024學(xué)年高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第2頁
吉林省白山市撫松縣第六中學(xué)2023-2024學(xué)年高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第3頁
吉林省白山市撫松縣第六中學(xué)2023-2024學(xué)年高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第4頁
吉林省白山市撫松縣第六中學(xué)2023-2024學(xué)年高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省白山市撫松縣第六中學(xué)2023-2024學(xué)年高三第一次調(diào)研測試數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當(dāng)點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.12.已知集合,則()A. B.C. D.3.設(shè)是兩條不同的直線,是兩個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則4.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直5.命題:的否定為A. B.C. D.6.設(shè),是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④7.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時,恒有.則不等式的解集為().A. B.C.或 D.或8.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.9.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.6310.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i11.已知向量,,,若,則()A. B. C. D.12.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角A,B,C的對邊分別是a,b,c,且,,,則_______.14.設(shè)等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.15.已知函數(shù),則過原點且與曲線相切的直線方程為____________.16.的展開式中的系數(shù)為________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).其中是自然對數(shù)的底數(shù).(1)求函數(shù)在點處的切線方程;(2)若不等式對任意的恒成立,求實數(shù)的取值范圍.18.(12分)已知中,內(nèi)角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設(shè),求的取值范圍.19.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.20.(12分)如圖,三棱柱中,側(cè)面是菱形,其對角線的交點為,且.(1)求證:平面;(2)設(shè),若直線與平面所成的角為,求二面角的正弦值.21.(12分)已知數(shù)列是等差數(shù)列,前項和為,且,.(1)求.(2)設(shè),求數(shù)列的前項和.22.(10分)某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;(3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設(shè),將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設(shè),則,.因為,所以,所以,當(dāng)時,等號成立.此時EH與ED重合,所以,.故選:B.【點睛】本題考查空間中點到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應(yīng)用.2、B【解析】

先由得或,再計算即可.【詳解】由得或,,,又,.故選:B【點睛】本題主要考查了集合的交集,補集的運算,考查學(xué)生的運算求解能力.3、C【解析】

根據(jù)空間中直線與平面、平面與平面位置關(guān)系相關(guān)定理依次判斷各個選項可得結(jié)果.【詳解】對于,當(dāng)為內(nèi)與垂直的直線時,不滿足,錯誤;對于,設(shè),則當(dāng)為內(nèi)與平行的直線時,,但,錯誤;對于,由,知:,又,,正確;對于,設(shè),則當(dāng)為內(nèi)與平行的直線時,,錯誤.故選:.【點睛】本題考查立體幾何中線面關(guān)系、面面關(guān)系有關(guān)命題的辨析,考查學(xué)生對于平行與垂直相關(guān)定理的掌握情況,屬于基礎(chǔ)題.4、D【解析】

根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對選項中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.5、C【解析】

命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.6、C【解析】

根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因為,,所以或,因為,所以,故②對③:或,故③錯④:如圖因為,,在內(nèi)過點作直線的垂線,則直線,又因為,設(shè)經(jīng)過和相交的平面與交于直線,則又,所以因為,,所以,所以,故④對.故選:C【點睛】考查線面平行或垂直的判斷,基礎(chǔ)題.7、D【解析】

先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識點,屬于較難題目.8、B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設(shè)左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.9、B【解析】

根據(jù)二項式展開式的通項公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【點睛】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識,考查理解能力,計算能力,分類討論和應(yīng)用意識.10、B【解析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點睛:本題考查復(fù)數(shù)的代數(shù)形式的運算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.11、A【解析】

根據(jù)向量坐標(biāo)運算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運算;關(guān)鍵是明確若兩向量平行,則.12、A【解析】

將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項.【詳解】由于等差數(shù)列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數(shù)列的基本量計算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】

已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結(jié)果.【詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.【點睛】本題考查正余弦定理在解三角形中的應(yīng)用,難度一般.14、2【解析】

直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數(shù)列的基本計算,意在考查學(xué)生的計算能力.15、【解析】

設(shè)切點坐標(biāo)為,利用導(dǎo)數(shù)求出曲線在切點的切線方程,將原點代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設(shè)切點坐標(biāo)為,,,,則曲線在點處的切線方程為,由于該直線過原點,則,得,因此,則過原點且與曲線相切的直線方程為,故答案為.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查過點作函數(shù)圖象的切線方程,求解思路是:(1)先設(shè)切點坐標(biāo),并利用導(dǎo)數(shù)求出切線方程;(2)將所過點的坐標(biāo)代入切線方程,求出參數(shù)的值,可得出切點的坐標(biāo);(3)將參數(shù)的值代入切線方程,可得出切線的方程.16、【解析】

在二項展開式的通項中令的指數(shù)為,求出參數(shù)值,然后代入通項可得出結(jié)果.【詳解】的展開式的通項為,令,因此,的展開式中的系數(shù)為.故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,涉及二項展開式通項的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用導(dǎo)數(shù)的幾何意義求出切線的斜率,再求出切點坐標(biāo)即可得在點處的切線方程;(2)令,然后利用導(dǎo)數(shù)并根據(jù)a的情況研究函數(shù)的單調(diào)性和最值.【詳解】(1),,∴,又,∴切線方程為,即.(2)令,,①若,則在上單調(diào)遞減,又,∴恒成立,∴在上單調(diào)遞減,又,∴恒成立.②若,令,∴,易知與在上單調(diào)遞減,∴在上單調(diào)遞減,,當(dāng)即時,在上恒成立,∴在上單調(diào)遞減,即在上單調(diào)遞減,又,∴恒成立,∴在上單調(diào)遞減,又,∴恒成立,當(dāng)即時,使,∴在遞增,此時,∴,∴在遞增,∴,不合題意.綜上,實數(shù)的取值范圍是.【點睛】本題主要考查導(dǎo)數(shù)的幾何意義及構(gòu)造函數(shù)解決含參數(shù)的不等式恒成立時求參數(shù)的取值范圍問題,第二問的難點是構(gòu)造函數(shù)后二次求導(dǎo)問題,對分類討論思想及化歸與等價轉(zhuǎn)化思想要求較高,難度較大,屬拔高題.18、(1);(2).【解析】

(1)由正弦定理直接可求,然后運用兩角和的正弦公式算出;(2)化簡,由余弦定理得,利用基本不等式求出,確定角范圍,進而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點睛】本題主要考查了正余弦定理的應(yīng)用,基本不等式的應(yīng)用,三角函數(shù)的值域等,考查了學(xué)生運算求解能力.19、(1)證明見解析(2)證明見解析【解析】

(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因為為平行四邊形,為其中心,所以,為中點,又因為為中點,所以,又平面,平面所以,平面;(2)作于因為平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【點睛】此題考查證明線面平行和線面垂直,通過線面垂直得線線垂直,關(guān)鍵在于熟練掌握相關(guān)判定定理,找出平行關(guān)系和垂直關(guān)系證明.20、(1)見解析;(2).【解析】

(1)根據(jù)菱形的特征和題中條件得到平面,結(jié)合線面垂直的定義和判定定理即可證明;

2建立空間直角坐標(biāo)系,利用向量知識求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點,,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因為,則在等腰直角三角形中,所以.在中,由得,以為原點,分別以為軸建立空間直角坐標(biāo)系.則所以設(shè)平面的一個法向量為,則,可得,取平面的一個法向量為,則,所以二面角的正弦值的大小為.(注:問題(2)可以轉(zhuǎn)化為求二面角的正弦值,求出后,在中,過點作的垂線,垂足為,連接,則就是所求二面角平面角的補角,先求出,再求出,最后在中求出.)【點睛】本題主要考查了線面垂直的判定以及二面角的求解,屬于中檔題.21、(1)(2)【解析】

(1)由數(shù)列是等差數(shù)列,所以,解得,又由,解得,即可求得數(shù)列的通項公式;(2)由(1)得,利用乘公比錯位相減,即可求解數(shù)列的前n項和.【詳解】(1)由題意,數(shù)列是等差數(shù)列,所以,又,,由,得,所以,解得,所以數(shù)列的通項公式為.(2)由(1)得,,,兩式相減得,,即.【點睛】本題主要考查等差的通項公式、以及“錯位相減法”求和的應(yīng)用,此類題目是數(shù)列問題中的常見題型,解答中確定通項公式是基礎(chǔ),準(zhǔn)確計算求和是關(guān)鍵,易錯點是在“錯位”之后求和時,弄錯等比

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論